Rendering Tons of Sand

Chris Allen* Doug Bloom

Jonathan M. Cohen

Laurence Treweek

Sony Pictures Imageworks

1 Introduction

On Spider-Man 3, one of the villains is the Sandman, a character
composed of sand. Sony Pictures Imageworks needed to render
Sandman both as a solid form and as flowing sand grains, which
in some scenes consisted of hundreds of millions of grains, and in
some scenes the grains were close enough to the camera to see fine
detail. This sketch describes our tools and workflow for rendering
so many grains with RenderMan and controlling the level of detail
for a consistent look.

2 Rendering

2.1 Grains on Polygons

In many of the shots Sandman was a solid object, animated as a de-
forming polygonal model. To save time and memory for simulating
particles, our DSO could read files of polygons with settings indi-
cating particle density and size and would generate the particles at
render time, with a consistent method of birthing particles on poly-
gons that guaranteed the particles would not pop on and off from
frame to frame as the model deformed.

2.2 Buckets of Sand

To load the millions of sand grains with their shading parameters
into memory would use more memory than our computers have,
so we implemented a dicing scheme in our procedural DSO to take
advantage of RenderMan’s delayed evaluation of procedural bound-
ing boxes. Our DSO would read the seed particles or the polygonal
model, which would have attributes or global settings to indicate
how many final renderable particles they would produce. The DSO
then adaptively diced the scene’s bounding box into smaller boxes,
subdividing the boxes until they were below a threshold of parti-
cles that could be loaded simultaneously. Since RenderMan only
loads procedurals as needed for a given bucket of pixels and it pro-
cesses buckets from left to right, we computed the bounding boxes
in screen space and diced the bounding boxes into horizontal strips
until they were the size of a bucket. This allowed the renderer to
discard particles it had finished with, leaving memory for the cur-
rent bucket’s particles.

2.3 Render-time Geometry Shaders

For dynamics-driven grains, we needed to simulate a manageable
number of particles and then boost the number of particles at ren-
der time. We accomplished this through a combination of steps.
We implemented a C-like shading language that lighters and shader
writers could use to control particle attributes at render time, allow-
ing them to birth new particles from the simulated seed particles
and vary the new particles’ size and other properties. Having an
embedded scripting language also allowed the lighters and effects
artists to create their own methods of birthing new particles, allow-
ing them to birth disks of particles and even to birth curved disks of
grains that conformed to the underlying polygonal mesh by inher-
iting the surface’s curvature as a per-point attribute. We also wrote
a preprocessing script to analyze the particles in a simulation and

*e-mail: {callen,dougb,jcohen,laurence } @imageworks.com

(b) Distant shot with hundreds
of millions of sand grains.

(a) Close up shot showing fine
grain detail.

Figure 1: (©Columbia Pictures Industries, Inc. All rights reserved.

determine the minimum number of neighbors each particle has over
the course of the shot, which was used to determine how many new
particles would be birthed from each seed. This guaranteed that
outlying particles would not be surrounded by clumps of rigidly
attached particles.

2.4 Level of Detail

Since some shots were close-up shots of sand, we needed control
for level of detail, so near grains would render with complex, mod-
eled geometry while distant grains would render with simpler, less
memory-intensive points. For greater control, we implemented our
own level-of-detail scheme in the DSO rather than use the ren-
derer’s built-in system. Each grain was assigned a level of detail
based on its size in screen space, with user-settable thresholds for
the different grain types. The first level for the smallest grains con-
sists of RiPoints. The second level for larger grains consists of
“multi-points”, clusters of four RiPoints for each rendered grain,
with randomized normals to simulate four shading samples. The
third level consists of RiCurves rendered as camera-aligned square
patches, then displaced in a shader into the shape of grain geome-
try. The fourth and highest level simply stamped a rib archive of the
polygonal sand grain model. This highest level was only used for
extreme close-ups, and most grains were far enough from camera
that a combination of points and multi-points was sufficient.

2.5 Tiling

Another technique to increase particle throughput was to tile the
render into vertical strips so that the renders would still take advan-
tage of the horizontal strips of screen-space dicing handled by our
DSO, but also split the memory load of the rows of buckets. The
tiles could easily be merged together in screen space, allowing us to
render hundreds of millions of particles across multiple CPUs with
minimal bookkeeping.

3 Results

Using the combination of techniques above, we were able to render
apeak recorded count of 480 million particles in a single final frame
in one of the shots. Figures a and b show example images from
Soider-Man 3.



