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Abstract

We present an unbiased Monte Carlo technique for estimating the
value of reflected radiance at a surface point due to a hemisphere
of direct distant illumination. We use an importance sampling es-
timator with a novel piecewise-constant importance function that
effectively concentrates ray samples where energy is likely to be
found. The importance function is efficient to evaluate and draw
samples from, and is chosen to minimize its squared distance from
the integrand of the radiance integral, even though the exact form
of this integrand is unknown.

To properly account for the effects of the visibility term in the
shading calculation, we propose the use of a shadow cache which
caches information about which ray directions are occluded or un-
occluded from a point in space. We can incorporate this infor-
mation into the importance function to automatically concentrate
hemispherical samples where the light source is likely to be unoc-
cluded, thereby increasing the efficiency of the estimator.

We present visual and numerical results that demonstrate the new
estimator can give orders of magnitude lower error than simpler
sampling techniques for highly complex lighting situations.

CR Categories: G.3 [Mathematics of Computing]: Probability
and Statistics—Monte Carlo Algorithms I.3.7 [Computer Graph-
ics]: Three-Dimensional Graphics and Realism—Color, shading,
shadowing, and texture

Keywords: global illumination, Monte Carlo integration, impor-
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1 Introduction

A common rendering task in visual effects is to integrate computer-
generated elements with a live action background. The CG mod-
els range from organic characters animated via complex physical
models to static objects like buildings or vehicles. Often, all of the
light in the scene emanates from outside the object, and the object
passively reflects incident radiance toward the camera. In practice,
these renderings are frequently achieved using a number of heuris-
tic techniques, mostly requiring labor intensive setup and tweaking
by digital artists.

As computers get faster and global illumination algorithms im-
prove, there is an increasing desire to efficiently calculate such
“outside-in” lighting situations using global illumination. A funda-
mental step in many of these algorithms is to compute, at a surface
point, the radiance reflected toward some direction due to direct il-
lumination (i.e., photons that have traveled directly from the light
source to the surface, without having been reflected in between).
We present a technique to compute this quantity efficiently in the
outside-in case where the incident light has the high variation found
in real-world lighting situations such as outdoors or on a cinematic
set.
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1.1 Reflected radiance

Consider an area light source that subtends solid angle Ω whose
radiance output at a particular wavelength is characterized by the
function L(p,ω), a function of a point in space p and a direction ω .
For a particular surface point p with normal n, and ray to the virtual
camera e (the “eye” ray), the reflected radiance from p along e due
to the light source can be expressed as the integral

I(p,n,e) =
∫

ω∈Ω
L(p,ω) fr(ω,n,e)Vp(ω)(n ·ω)dω (1)

where fr is the bi-directional reflectance distribution function
(BRDF) that describes how light is scattered from direction ω to
e with surface normal n, and Vp is the visibility function whose
value is 0 if p is occluded from the light source in direction ω and
1 otherwise.1

For simplicity, we can refer to the integrand as Hp,n,e and rewrite
the equation as

I(p,n,e) =
∫

ω∈Ω
Hp,n,e(ω)dω.

We call H the hemispherical transfer function, and its SI units are
Watt/m2/sr2, or radiance per solid angle. For notation’s sake, we
will drop the p,n,e subscripts, but it is important to remember that
H varies with p, n, and e2.

In the technique of image-based lighting (IBL), we consider a
light source positioned at the sphere at infinity. Then L(p,ω) de-
pends only on direction ω , so we can drop the p parameter. Typi-
cally, this light source is derived from measured data captured with
a panoramic camera or radiance sensor, and the values of L(ω) are
stored in an environment map. For the remainder of this paper, we
will use L in this image-based lighting sense. Furthermore, Inte-
gral 1 is evaluated over the entire hemisphere centered around the
surface normal n, which we will denote by Ωn. We drop the n sub-
script when it can be inferred from the context.

The overriding cost of evaluating Equation 1 is testing the visibil-
ity term, which typically requires casting a ray into the scene. Our
goal, therefore, is to minimize the number of times the visibility
function must be tested by minimizing the number of hemispheri-
cal samples required to estimate Equation 1 with low noise and high
accuracy. While it may be possible to use finite quadrature rules to
estimate integrals such as we are interested in, Monte Carlo (MC)
and Quasi-Monte Carlo (QMC) methods are the obvious choice be-
cause of their accuracy and flexibility. The environment-based im-
portance sampling scheme presented in Section 4 produces good
results with as few as 128 hemispherical samples, even in a highly
dynamic lighting environment.

We focus on diffuse reflectance models because they are the
hardest to sample in the case we are interested in. Because a diffuse

1Most authors use Lr to denote reflected radiance. We prefer the func-
tional notation I(p,n,e) in this context because it stresses that reflected ra-
diance varies over the image plane and is a function of p, n, and e.

2In the case of a Lambertian BRDF, H is view-independent and hence
does not not depend on e.



BRDF distribution essentially has no tail, it does not mask the ex-
treme spikes and variations found in L or Vp. Therefore we need to
be sure that the sampling pattern will find all of the features in L and
Vp, which can be quite difficult since there is no analytical form for
either of these functions. Furthermore, a large portion of the total
CPU time spent in a large production facility such as Rhythm and
Hues is spent calculating precisely this quantity: reflected radiance
of Lambertian surfaces under complex distant illumination.

Our technique will generalize to any reflectance model where the
BRDF (multiplied by the cos(ω) factor) can be expressed as a func-
tion of a single direction, or where the BRDF can be approximated
as the product of several such functions [Kautz and McCool 1999;
Latta and Kolb 2002]. Potentially, this technique could cover an ex-
tremely large and useful class of refectance distributions. However,
at the time of this writing, non-Lambertian reflectance models have
not been implemented.

2 Related Work

The technique of image-based lighting has existed for over 20 years
in the form of environment mapping and preconvolved environment
mapping, techniques which do not consider visibility [Blinn and
Newell 1976; Williams 1983; Miller and Hoffman 1984; Greene
1986]. The recently introduced technique of ambient occlusion
mapping [Christensen 2002], builds on this early work by approx-
imating visibility with a single scale value. These two techniques
will be described in Section 3.1. [Debevec 1998] demonstrated that
IBL could be used in a global illumination setting by projecting the
environment map onto geometry as an emissive texture map. De-
bevec and his colleagues also filled in a number of missing pieces of
the IBL technique, such as how to capture radiometrically accurate
information using a standard camera [Debevec and Malik 1997],
and how to cast shadows from CG objects onto real ones [1998].

The sampling technique described in Section 4 is a form of im-
portance sampling, which is an important field of study in numer-
ical analysis. We refer the reader to a textbook such as [Evans
and Swartz 2000] for a thorough description, or [Owen and Zhou
2000] for a an overview of modern importance sampling. Because
of its good performance and flexibility, importance sampling has
been used extensively in rendering algorithms. [Shirley et al. 1996]
described techniques for efficiently sampling luminaires using im-
portance sampling. [Veach and Guibas 1995] gave a formulation
for optimally combining importance sampling techniques for sam-
pling the reflectance distribution as well as light sources. Veach
and Guibas later applied a Monte Carlo Markov Chain algorithm
to solve the path tracing form of global illumination [Veach and
Guibas 1997]. For an excellent overview of importance sampling
and other Monte Carlo methods we recommend Veach’s encyclo-
pedic dissertation [1997].

Solving Equation 1 under direct illumination is a sub-problem
that arises frequently in global illumination. Some of the algorithms
that require a solution to this sub-problem include the final gath-
ering step of photon mapping [Jensen 2001], distributed ray trac-
ing [Cook et al. 1984], bi-directional path tracing [Lafortune and
Willems 1993], hierarchical Monte Carlo rendering [Keller 2002],
and irradiance caching [Ward et al. 1988].

Perhaps the most similar work to our own is [Jensen 1995] which
guides Monte Carlo path tracing with an importance function built
from information in a photon map. Like Jensen, our importance
function is piecewise constant, and based on a partition of the hemi-
sphere. The advantage of Jensen’s approach is that the photon map
is able to account for direct and indirect illumination simultane-
ously, while our importance function is based only on direct illumi-
nation. In the case that most of the light energy is direct, our impor-
tance function matches the integrand more closely. Both techniques
naturally complement each other, and they could be combined di-

rectly using Veach and Guibas’ balance heuristic [1995], or via an
extended shadow cache as discussed in the Conclusion.

3 Existing Strategies

3.1 Approximate solutions

By ignoring the visibility term Vp, we get an approximation to
Equation 1 we will refer to as the non-shadowed approximation.
In the IBL setting, when the BRDF fr(n ·ω) can be parameterized
by exactly one vector, there is a simple algorithm for computing the
non-shadowed approximation. In the Lambertian case, for exam-
ple, fr(ω,n,e)(n ·ω) = n ·ω , and Equation 1 simplifies to

I(n) ≈ Ins(n) =
∫

ω∈Ω
L(ω)(ω ·n)dω. (2)

Ins is a function of the surface normal n. Thus, Ins(n) can be pre-
computed for a dense but finite set of directions and stored in a
texture map. Shading a surface point with normal n, involves a
single texture map lookup based on the value of n. This “diffuse
preconvolution” technique (shown in Figure 1(a)) was introduced
by Greene [1986] and is closely related to the theory of spherical
convolution, a link thoroughly explored in [Ramamoorthi and Han-
rahan 2001].

The recently introduced technique of ambient occlusion mapping
(Figure 1(b)) approximates the effects of shadowing in the shading
calculation [Christensen 2002]. The basic ambient occlusion ap-
proximation to Equation 1 is

I(n) ≈ Iao(n) =

(

1
2π

∫

ω∈Ω
Vp(ω)dω

)(

∫

ω∈Ω
L(ω)(ω ·n)dω

)

.

(3)
The value of the first integral is called ambient visibility (its com-
plement is ambient occlusion) and may be precomputed and stored,
for example, in a texture map.

There has also been work in approximations to Equation 1 using
either a finite set of directional lights to approximate the continu-
ously varying incident radiance L (shown in Figure 1(c)) [Cohen
and Debevec 2001], or deterministic quadrature rules to directly es-
timate the integral [Kollig and Keller 2002a]. The problem with
finite techniques like these is that they cannot correctly compute
both soft and hard shadows without a large number of samples. In-
adequate sampling resolution results in banding along the shadow
regions. Kato describes a novel deterministic final gather algorithm
used in the Kilauea renderer [2002] that reuses ray samples from
pixel to pixel via view interpolation called ”final gather reprojec-
tion.” The shadow cache in Section 4.3 could be seen as a proba-
bilistic version of Kato’s approach.

Photon mapping can also be used to estimate reflected radiance.
Although it is technically a biased algorithm, it is accurate enough
to be considered exact if a high-enough number of photons are
traced. However, the weakness of photon mapping is exactly the
case we are interested in – estimating reflected radiance due to
direct illumination. Although techniques such as casting shadow
photons [Jensen and Christensen 1995] can estimate this quantity,
Jensen [2001] recommends using path tracing to obtain the final ac-
curate estimate in a two-pass photon mapping algorithm. Also, we
are not aware of previously published techniques for efficiently in-
corporating image-based lighting into a photon-mapping renderer.

3.2 Exact Monte Carlo solutions

There are as many Monte Carlo techniques and ways of combin-
ing them to estimate Equation 1 as there are rendering systems. It
is therefore hard to say which techniques work best, since it de-
pend on the particular feature of H. The theory of Quasi-Monte



(a) Preconvolved diffuse envi-
ronment mapping.

(b) Ambient occlusion map-
ping.

(c) Approximation by 40 di-
rectional lights.

(d) Uniformly illuminated
Cosine-weighted QMC with
64 samples.

(e) The same as (d) under the
grace environment.

(f) New sampling scheme
with 64 samples.

(g) New sampling scheme
with 165 samples and no visi-
ble noise.

(h) New sampling scheme un-
der uniform lighting with 64
samples.

Figure 1: Comparison of the different techniques for estimating reflected radiance. We have intentionally rendered with no anti aliasing and
used no indirect illumination in order to highlight noise and other artifacts.

Carlo integration is quite advanced, and integration schemes us-
ing randomized QMC sequences are probably the best for blind
or BRDF-based sampling. For comparison purposes, we will use
the randomized QMC sequence described in Section 7 of [Kollig
and Keller 2002b], which is based on the Larcher-Pillichshammer
radical inverse function. For uniform lighting environments, im-
portance sampling based on the surface BRDF works very well.
[Dutre 2001] describes all of the necessary formulas for Lamber-
tian or Phong-based importance sampling. In our experience, the
combination of these two techniques produces near-perfect results
when the surface occlusion is fairly simple and the lighting envi-
ronment is uniform or almost uniform.

Figure 1(d) shows the results of rendering a simple scene with
randomized QMC cosine-weighted importance sampling under uni-
form lighting. This image is generated with only 64 rays per pixel,
and has no visible noise. The problem with this technique, how-
ever, is that it only takes the features of fr into account. Therefore,
it will perform poorly when the features of L dominate the behav-
ior or H, which is the case we are interested in. This can be seen
in Figure 1(e), which is rendered with the same technique at the
same sampling rate under the complex “grace” environment [De-
bevec 1998]. Figure 1(f) shows the environment-based importance
sampling technique described in Section 4 at the same sampling
rate. At 165 hemispherical samples, this scheme produces almost
no visible noise (Figure 1(g)). A comparable noise level with the
QMC integrator requires about 1000 samples.

Our technique performs slightly worse than a good BRDF-based
importance sampling scheme when the environment is uniform and
visibility is simple, as can be seen by comparing Figure 1(d) to
Figure 1(h). This is not surprising because QMC BRDF-based
schemes are close to analytically optimal in these cases and have
superior stratification of samples.

4 The Sampling Scheme

For environment map E
  For scene geometry M
    For camera C
      For each pixel p
        For each hemispherical sample w
          Compute unoccluded contribution from 
          environment map E in direction w to 
          surface point of M visible at camera 
          C under pixel p.  

Figure 2: The image-based lighting process.

Figure 2 gives pseudo code for how the IBL process fits into a
production workflow. To optimize the use of IBL within such a
workflow, our guiding principle is to to factor as much as possible
out of the inner loops. In particular, if there is a way to decrease
the required number of hemispherical samples, we wouldn’t mind
spending several hours of computation time if this cost is incurred
only once per environment map.3 Scenes and cameras change more
often, but we can still afford to spend several minutes of precompu-
tation at the scene or camera level. We also incur some overhead per
evaluation of Equation 1 (i.e. every pixel or sub-pixel) that makes
our technique slower than a simpler sampling technique. However,
the savings gained by decreasing the number of required hemispher-
ical samples quickly outweigh this “startup” overhead.

3Actual precomputation times are about 20 minutes, depending on the
quality settings.



4.1 General importance sampling

Importance sampling is an unbiased Monte Carlo technique that
succeeds by placing more samples where the integrand has more
energy. Given a function f over domain D, to estimate the integral

I =
∫

x∈D
f (x)dµ(x) (4)

using importance sampling, we need a function p(x) such that sam-
ples can be drawn from D according to p.d.f. p, and p is easy to
evaluate at any point in D. Given N samples {Xi}

N
i=1 drawn from

D, Xi ∼ p, the importance sample estimator of Equation 4 is

Îp,N =
1
N

N

∑
i=1

f (Xi)

p(Xi)
.

Define the residual r(x) = f (x)− I p(x). Îp,N is a random variable,
and its variance is given by

Var
[

Îp,N

]

=
1
N

∫

x∈D

r(x)2

p(x)
. (5)

Clearly this is minimized when r(x)2/p(x) is close to 0, which hap-
pens when p(x) ≈ f (x)/I. We refer the reader to [Owen and Zhou
2000] for a more detailed discussion of the pitfalls and benefits of
importance sampling.

Importance sampling has been used, for example, in [Veach and
Guibas 1995], to evaluate reflected radiance by matching features
in the BRDF fr. This works well for uniform area light sources. To
apply it most effectively in IBL, however, we would like an impor-
tance function that matches all of the features in the hemispherical
transfer function Hp,n,e. This is difficult for two reasons. First, it is
necessary to pick an importance function that is easy to draw sam-
ples from. We propose using a piecewise-constant approximation
to H that can be rapidly computed and sampled from. Second, H is
different for each point p because the visibility function Vp changes
with p. We propose using a shadow cache to estimate the value
of Vp based on nearby surface samples, which can then be com-
bined with the piecewise-constant importance function to yield an
efficient importance sampling scheme.

4.2 Environment-based importance sampling

We begin by splitting H into a sum of several functions, each with
small support. Let {Ti}

M
i=1 be a partition of the unit hemisphere Ωn

in the sense that Ti ∩Tj 6= /0 ⇒ i = j and ∪M
i=1Ti = Ωn. We rewrite

H as

H(ω) =
M

∑
i=1

χTi
(ω)H(ω)

where χTi
(ω) is the indicator function over region Ti that is 1 when

ω ∈ Ti otherwise 0. In the Lambertian case, this expands to

H(ω) =
M

∑
i=1

χTi
(ω)L(ω)(ω ·n)Vp(ω)

If a region Ti is small enough, we can approximate the value of
H over Ti as a constant function whose value is the average of H
over Ti. Thus we have

H(ω) ≈
M

∑
i=1

χTi
(ω)

∫

θ∈Ti
L(θ)(θ ·n)Vp(θ)dθ

Area(Ti)

where Area(Ti) is the surface area of the region Ti and θ is a dummy
variable of integration. If we leave out the visibility term, the inte-
gral in the numerator can be interpreted as the response of the envi-
ronment map defined by L(θ)χTi

(θ) under the Lambertian BRDF
with normal n, which is just the non-shadowed approximation from
Equation 2. We can further apply the ambient occlusion approxima-
tion as in Equation 3 to approximate the visibility term’s contribu-
tion with the average occlusion over the region Ti. In other words,
let

Ai(p) =

∫

θ∈Ti
Vp(θ)dθ

Area(Ti)

which gives a value Ai(p)∈ [0,1]. Since computing Ai(p) exactly is
is difficult, we well use an estimate for this value Âi(p). Improving
the accuracy of the estimate Âi(p) will decrease the variance of our
final estimator in Equation 7, but to make the estimator unbiased we
only require that Âi(p) > 0 when Ai(p) > 0. A piecewise-constant
approximation to H, denoted Ĥ, is

Ĥp,n(ω) =
M

∑
i=1

χTi
(ω)

Âi(p)
∫

θ∈Ω χTi
(θ)L(θ)(θ ·n)dθ

Area(Ti)
(6)

Ĥ will be constant over each region Ti. Like H, Ĥ varies with the
point p and the normal n. Figure 3 shows a plot of Ĥ, incorporat-
ing the environment map and the cosine falloff of the Lambertian
model.

Our goal is to use the standard importance sampling estimator
given in Equation 4 with Ĥp,n as the importance function, Ωn as the
domain, and Hp,n as the integrand. For this, we need to be able to
evaluate Ĥp,n efficiently at each pixel, and we need to be able to
draw samples from Ωn according to the distribution Ĥp,n. We now
describe how to accomplish both of these tasks.

The approximation Ĥp,n depends on a particular partition of the
hemisphere centered around n. Because n may change with every
pixel, we must generate a suitable partition on-the-fly, and compute
Ĥp,n over each of the regions in this partition.

Let {Ti}
M
i=1 be a fixed tessellation of the sphere into M spherical

triangles. In Section 4.4 we describe how to generate a good tes-
sellation given an environment map. As a precomputation step that
is performed once per environment map, for each spherical triangle
Ti, we compute the diffuse convolution of χTi

L,

Ii(n) =
∫

ω∈Ti

(χTi
(ω)L(ω)(ω ·n)dω

and store the results in a texture map indexed by surface normal n.
We use a polar coordinate parameterization of the Ii map at 32x64
resolution. (Higher resolutions did not make any difference in ren-
dering quality.) This is the most expensive step in precomputation,
and the running time is proportional to M.

In the inner loop of a rendering algorithm, say the renderer needs
to estimate reflected radiance at point p with normal n. We gen-
erate a tessellation of Ωn and compute the values of Ĥp,n over
each spherical triangle in this tessellation as follows. First, we
compute a weight Wi for each triangle Ti in the fixed tessellation,
Wi = Ii(n)Âi(p). Ii(n) is trivial to compute since it was precom-
puted and stored in a map. Our technique for computing Âi(p) will
be discussed in Section 4.3.

To generate the tessellation of the hemisphere about n, our idea
is to adjust the fixed spherical tessellation by a “clipping” proce-
dure, where each triangle is clipped against Ωn to generate a visible
triangle list. The algorithm for spherical triangle clipping is given
in Appendix A. The result of clipping a triangle against the hemi-
sphere is that either the entire triangle is outside the hemisphere, in



(a) The “grace” environment
map.

(b) A plot of Ĥ at a surface
point.

(c) The same plot as (b) 32
times darker to demonstrate the
detail in the bright regions.

(d) The locations of 1000 ray
samples chosen according to
Ĥ.

Figure 3: Figure (b) and (c) show the value of Ĥ at a sample point under the grace environment (a). The adaptive tessellation algorithm
(Section 4.4) generates higher detail where the environment has higher variance. The ray samples in (d) are concentrated over the brightest
light sources, even though they subtend a small solid angle.

Si
10

Ti

Figure 4: The function m maps from the unit square to the hemi-
sphere according to the weight of each spherical triangle. First, the
index of i of a point is determined based on which span Si its x co-
ordinate lies in. It is mapped to the unit square by normalizing its
position within Si via the Coord function, and then to the spherical
triangle via the SphTri function.

which case it is not included in the visible list, the entire triangle
is inside the hemisphere, in which case it is included in the visible
list unmodified, or the triangle is partially inside the hemisphere, in
which case the triangle must be split.

As described in the Appendix, the portion of a partially clipped
triangle Ti that overlaps Ωn can be expressed as either a smaller
triangle T ′

i , or the union of two smaller non-overlapping triangles
T 1

i and T 2
i . In the case that a single triangle is produced, we include

T ′
i (but not Ti) in the visible list and set its weight to Wi. In the case

that two triangles are produced, we split the weight proportional to
the areas4 of the two result triangles,

W 1
i =

(

Area(T 1
i )

Area(Ti)

)

Wi, W 2
i = Wi −W 1

i .

and include T 1
i and T 2

i in the visible list (but not Ti). The list of
visible triangles is a partition of Ωn, and the value of Ĥ over a
visible triangle Ti is equal to the triangle’s weight Wi divided by
its area.

We draw samples from Ω according to Ĥ as follows. First, for
each triangle in the visible list we compute the normalized weight
Wi as

Wi =
Wi

∑Tivisible Wi

which is the probability that a sample will be drawn from visible
triangle Ti. We build a map m : [0,1]× [0,1] → Ω such that if x

4Girard’s Theorem says that the area of a spherical triangle is α + β +
γ −π where α , β and γ are the dihedral angles at the triangle’s vertices.

is uniformly distributed over [0,1]× [0,1], then m(x) will be dis-
tributed over Ω with probability Ĥ. Let Mvis be the number of visi-
ble triangles. We divide the interval [0,1] into Mvis non-overlapping
subintervals Si = [ai,bi), such that the length of Si is Wi. The func-
tion Idx(x) maps from a point in x ∈ [0,1] to index i such that x ∈ Si.
Idx can be efficiently implemented using a binary search. We also
define the map Coord(i,x) as

Coord(i,x) =
x−ai

bi −ai
.

The function SphTri(T,u,v), described in [Arvo 1995], uniformly
maps from the unit square to the spherical triangle T . Finally, m is
defined as

m(u,v) = SphTri(TIdx(u)
,Coord(Idx(u),u),v).

Figure 4 gives a schematic view of m. When Idx(u) = i, m(u,v) ∈
Ti, and the value of Ĥ(m(u,v)) is Wi/Area(Ti).

If {x j}
N
j=1 are random samples uniformly distributed over

[0,1]× [0,1], the environment-based estimator for Equation 1 is5

Î
Ĥ,N

(p,n) =
1
N

N

∑
j=1

L(m(x j))(m(x j) ·n)Vp(m(x j))

Ĥ(m(x j))
(7)

While m has the desired sampling property, it is discontinuous
and hence will destroy any stratification structure of the point set
{x j}. Despite this, we have observed that points {x j} generated
using randomized QMC sequences give better results than indepen-
dently drawn samples.

4.3 The shadow cache

The visibility term makes Equation 1 very difficult to solve because
it makes the integrand discontinuous. However, as shown in Fig-
ure 5, there is coherence in the values of Vp within a neighborhood
of p.

Our method for estimating Ai(p) takes advantage of this coher-
ence. Whenever a hemispherical ray is cast, we note from which
triangle Ti in the fixed spherical tessellation the sample was taken,
and record whether the ray was occluded or not. For each triangle
Ti, we compute a denominator di equal to the total number of rays

5We are glossing over the issue of multiple spectral wavelengths. Ide-
ally, we would sample each wavelength separately. In practice this is too
expensive, so we use use the luminance value of Ii(n) for the calculation of
Wi.



Figure 5: The shadow cache exploits the principle that the visibility
function (plotted in the upper left corner with a polar parameteriza-
tion) is similar for points that are near each other.

cast through that triangle, and a numerator ni equal to the number
of those rays that were unoccluded.6 To save memory, the shadow
cache values can be stored at a lower angular resolution than the
fixed tessellation used in Ĥ, as long as there is a correspondence
between the indices. We call a complete set of values ni and di cen-
tered about a particular point a cache item. Cache items are stored
in a data structure called the shadow cache. To compute Âi(p), we
search the shadow cache for all cache item nearby to p, and com-
pute the sums of the items’ numerators and denominators, σni and
σdi. If σdi is less than some threshold (we use 3), we say that there
is not enough information to make a good estimate and use a value
of 1. Otherwise, we use σni/σdi.

Rather than using this value for Âi(p) directly in Equation 6, we
remap the value following defensive importance sampling [Owen
and Zhou 2000; Hesterberg 1995] according to a tunable parameter
α ∈ [0,1],

αÂi(p)+(1−α)(.5)

which prevents Ĥ from having an arbitrarily small tail distribution.
We have gotten good results with α = .7.

(a) With shadow cache. (b) No shadow cache.

Figure 6: (a) was rendered with a shadow cache, (b) was rendered
without. The error in the shadow region is reduced by 10 percent.

We have implemented a simple image-space caching data struc-
ture, which stores a cache item every few pixels, similar to the irra-
diance cache [Ward et al. 1988]. Proximity queries are then based
on image-space locality. This image space locality condition may
result in noisier regions near geometric discontinuities as shadow
cache information is propagated from one pixel to a neighbor even
though the corresponding points on the surface of the scene are not
spatially close. We believe that these artifacts are not a fundamen-
tal flaw of the shadow cache, however, and could be alleviated by
testing for spatial proximity before sharing cache items between

6Since we only need approximate shadow information, ni and di are
stored with 8 bits precision each.

Figure 7: Triangulations with M = 5000 generated from grace en-
vironment (a) and the video store interior (b). The minimum subdi-
vision level is 3, the maximum is 6.

pixels, or by storing the shadow cache in a more sophisticated spa-
tial data structure such as a kd-tree or mapped onto the surface of
the geometry. With our implementation, the shadow cache typically
reduces error by about 10 percent in shadowed regions, as shown in
Figure 6.

The value of Ai(p) is a purely geometric quantity, and hence
could be baked into the scene geometry as a preprocess or reused
between renders if the geometry does not change.

While it may seem that the shadow cache results in a biased al-
gorithm, this is not the case. In fact, the technique presented here is
truly unbiased. The proof is as follows.

The standard importance sampling estimator is unbiased if two
conditions on the importance function are met: (1) the importance
function is non-zero whenever the integrand is non-zero, and (2) the
samples are all drawn with respect to the same importance function.
Condition (1) is met because a shadow cache values of 0 is never
used as described above. Condition (2) is met by design. In the
initialization stage before evaluating the integral for a given pixel,
the algorithm reads the values in the shadow cache for the current
pixel and uses these values to build the importance function Ĥ. In
the course of evaluating the integral, the renderer cast rays into the
scene to test occlusion. The results of these rays casts are stored in
the shadow cache. However, the adjustments made to the shadow
cache do not feed back into the current integral evaluation, but are
only used in subsequent evaluations of reflected radiance at nearby
pixels. Therefore each individual evaluation of reflected radiance
per pixel is unbiased. The shadow cache merely accelerated conver-
gence of the Monte Carlo estimator, but does not otherwise affect
the result.

4.4 Choosing a good triangulation

As stated in Equation 5, the variance of an estimator is the integral
of the ratio of the squared residual to the importance function. Thus
there will be high variance when the residual is high relative to the
estimated importance. In general, this means the variance of our
estimator will be high when L(ω)(ω ·n)Vp(ω) varies a lot over the
area of a particular triangle. Because ω · n and Vp(ω) depend on
n and p, there is no way to take them into account when devising
the fixed tessellation of the sphere. Instead, the best we can do
reduce the residual error is to minimize the variation of L(ω) over
each triangle by more finely tessellating regions of the sphere where
L(ω) is varying the most.

We use a greedy algorithm to generate adaptive triangulations of
the sphere. We begin with an icosahedron, which has 20 triangles,
and subdivide a minimum number of times (a minimum level of
three works well). All triangles are placed in a heap sorted in de-
creasing order by the variance of the environment map L(ω) over



Figure 8: Plot of L2 error of rendering a scene under the grace
environment as a function of M.

the region of that triangle. Given a triangle budget M, we iteratively
remove the first triangle from the heap (which will have the largest
variance) and test if its subdivision level is below a user threshold.
If so, we subdivide it once, and place the four new child triangles
back on the heap. The process halts when there are M total trian-
gles. The results of this algorithm for the grace and video store
environments are shown in Figure 7.

As future work, we would like to derive optimal upper and lower
bounds on the tesselation level of the icosahedron based on the sur-
face BRDF and the variance in the environment map.

M is a quality setting, and we can afford to set it quite high
without adversely affecting rendering times. The per-hemispherical
sample cost if O(log(M)), which is the cost of the Idx function.
The per-pixel cost if O(M), but as the number of ray samples in-
creases, this cost is quickly overtaken by the cost of ray casting.
We performed an experiment where we rendered the scene in Fig-
ure 1 at 10,000 samples per pixel as our baseline. We then rendered
the scene with different values of M at 165 samples per pixel, and
computed the L2 distance between the rendered image and the base-
line image. The plot of this error is shown in Figure 8. The error
decreases significantly up until about 2200, then levels off around
M = 3500, although it continues decreasing slightly. For all the
renders in the paper and in the video, we set M at 5000.

5 Results and Comparisons

The images in Figure 9 compare the new sampling scheme against
cosine-weighted QMC integration. The video environment (Fig-
ure 9(a)) was captured on a live-action set. The outdoor environ-
ment (Figure 9(b)) was captured in direct sunlight which is difficult
to sample because the sun dominates, yet subtends a small solid an-
gle. The office environment (Figure 9(c)) was captured in an office
and has no natural light.

We rendered the armadillo model in these three environments at
a sampling rate so that a small amount of noise is still visible. The
video store environment is the hardest to sample because there are
two very bright and small lights that dominate the scene. Our sam-
pling scheme effectively reveals hard shadows from the key lights
and soft shadows from the fluorescents (Figure 9(d)), while cosine-
weighted sampling fails completely (Figure 9(g)). The results from
the outdoor environment are similar (Figures 9(e) and (f)).

We rendered the video and outdoor scenes at 4000 samples per
pixel with cosine-weighted sampling, and the renders were still ex-
tremely noisy. In these cases, our sampling scheme is at least 15 and
20 times more efficient, respectively. For the office environment,
cosine-weighted sampling matches the noise level of Figure 9(f) at
1200 samples per pixel, indicating our scheme is 10 times more
efficient in this case.

In general, the greater the dynamic range in the environment
map, the more environment-based importance sampling out per-
forms cosine-weighted sampling, in some cases by well over an
order of magnitude.

6 Alternate Techniques

In the course of developing this algorithm, we compared it against
several other possibilities.

6.1 Defensive Importance Sampling

We originally implemented a more sophisticated technique, Hester-
berg’s defensive importance sampling [Hesterberg 1995]. As the
importance function, we used a mixture between the environment-
based importance (Ĥ) and a uniform distribution. (For notation’s
sake, assume Ĥ has been normalized to have unit integral over the
hemisphere.) In other words, take the importance function to be

Imp(ω) = β Ĥ(ω)+(1−β )
1

2π

where β is the “defensive parameter” that mixes in a distribution
with a broad tail, in this case the uniform distribution. A non-zero
value of β will prevent samples from clustering in bright areas only.
Interestingly, best results were obtained with β = 0, i.e., no defen-
sive sampling. Figure 10 shows graphs of the L2 error of the floating
sphere rendered under the grace environment as function of β .

Figure 10: Total image L2 error under the “grace” environment as a
function of β . The top graph is a linear graph in the range [0,0.5],
the bottom is log-linear in the range [0,0.1].

Our guess is that pure importance sampling works best because
occlusion of non-important lightsources is not a major source of
noise. Even if the importance function does not match the inte-
grand in a dark region due to occlusion, the importance function
will overestimate the integrand, which is not nearly as bad as under-
estimating the integrand. As long as the bright regions are sampled
well, the estimator will still have low variance.



(a) Video store environment (b) Outside environment (c) Office environment

(d) Environment-based sampling, 256
samples.

(e) Environment-based sampling, 200
samples.

(f) Environment-based sampling, 128 sam-
ples.

(g) Cosine-weighted QMC, 256 samples. (h) Cosine-weighted QMC, 200 samples. (i) Cosine-weighted QMC, 128 samples.

Figure 9: Comparison of the new sampling technique against QMC cosine weighted sampling under different lighting environments.

We believe that mixed importance sampling/control variates
schemes along the lines of [Owen and Zhou 2000] may work better
than pure importance sampling, but investigating whether this is so
remains future work.

6.2 Pixel-based Importance Sampling

We implemented a standard importance sampling estimator where
the importance function is derived from a lower resolution lumi-
nance version of the actual envionment map. Call this low-res im-
age E[., .] with dimension w× h, and assume it is a standard polar
parameterization, with the positive Y -direction corresponding to the
top row in E. Say we are shading a surface point with normal n with
Lambertian reflectance. Given a pixel (i, j) corresponding to direc-
tion ω in the environment map, the probability of drawing a sample
from that pixel should be proportional to

Prob(i, j) ∼ H(i, j) = max(ω ·n,0)E[i, j]Area(i, j)

where Area(i, j) is the area subtended by the pixel, which is ap-
proximated by 4π2√1−ωy/wh.

For each pixel in E, compute H(i, j), and take the sum over all
pixels, S = ∑i, j H(i, j). The probability of choosing pixel (i, j) is
equal to H(i, j)/S, and the value of the importance p.d.f over pixel
(i, j) is 2πH(i, j)/(Area(i, j) ·S). We use a chart similar to m to dis-
tribute samples over the hemisphere according to this importance
function. From these building blocks, it is straightforward to im-
plement standard importance sampling to estimate the reflected ra-
diance. This method is O(wh) per pixel, and O(log(wh)) per ray
sample.

The triangular-based approach in Section 4 significantly outper-
forms this pixel-based approach in terms of efficiency and bias.
First of all, the pixel-based method is biased. This is because we
are approximating the hemisphere centered around n with the union
of pixel regions, which will not match a hemisphere exactly. As a
result, ray samples will sometimes be generated in a direction that
is in the list of visible pixels, yet outside the visible hemisphere. To



generate an unbiased estimator, we would need to “clip” the pixel’s
polygonal support to the hemisphere, similar to the triangle-based
scheme. However, this is much more elegant to handle in the case of
triangles since clipping triangles yields more triangles, while clip-
ping 4-sided polygons may yield more complicated shapes.

In terms of efficiency, it is better to use an adaptive tesselation
of the sphere than a fixed grid such as in a pixel-based scheme.
The running time of both algorithms depend on the number of sub-
divisions of the sphere, M in the case of triangles, or w · h in the
case of pixels. Because it is more efficient to use an importance
function that matches the integrand with fewer subdivisions of the
sphere, the adaptive scheme outlined in the paper is more efficient
than pixel-sampling. One could use a multiresolution representa-
tion of the environment map, but the spherical triangle scheme han-
dles multiresolution with no extra complexity.

Figure 11 shows 4 images. All were rendered with 165 samples
per pixel. Rendering times were all comparable (within 20 percent).
The images visually demonstrate that an adaptive triangular subdiv-
sion of the sphere yields superior results in the same rendering time.
Numerical results are listed in Table 6.2. The L2 error in the table is
computed as the image distance from a “baseline” render at a very
high sampling rate. The data shows that in the case of the complex
“video store” environment, the scheme in the paper is much more
efficient than a naive pixel-based approach. The two schemes are
more evenly matched for the grace environment, although the tri-
angle scheme is still better. The rendering time measurements are
taken from a non-optimized prototype renderer and should be taken
as suggestive only.

7 Future Work

There are a number of areas where the sampling scheme could be
improved. As stated above, the function m does not preserve strati-
fication structure of an input point set. A mapping that does a better
job of this could better leverage advantages of QMC integration,
which could further decrease the variance of the estimator. Higher-
order approximations to H might give better results by matching
the integrand H more accurately. The difficulty with higher-order
functions on the sphere is that it can be quite difficult use them as
a p.d.f. from which to draw samples. Using the approach outlined
in [Arvo 2001], it is very difficult to derive a closed-form expres-
sion for a map from the unit square to a spherical triangle according
to a non-constant p.d.f. A scheme such as rejection sampling might
work, but that is generally not compatible with stratified sampling.

We believe there is potential for greatly improving the efficiency
of this technique by more clever exploitation of the shadow cache.
Here, we present only a simple version. More sophisticated and
accurate shadow caching techniques, and more accurate ways of
extracting information from them, could potentially yield a signifi-
cantly more efficient estimator when occlusion is complex, such as
for a finely displacement-mapped character.

Also, in a probabilistic framework such as presented here, it is
easy to take advantage of approximate information about where
light is distributed to increase efficiency. For example, we could
incorporate information from a Photon map (as in [Jensen 1995]),
in order to trace rays where we expect to find either direct or indirect
light. Also, it would be straightforward to use a more complex vis-
ibility function that accounts for transmission through translucent
media.
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(a) “Grace” environment,
pixel-based subdivision with
w = 200, h = 100.

(b) “Grace” environment,
triangle-based subdivision
with 5000 triangles.

(c) “Video store” environ-
ment, pixel-based subdivision
with w = 200, h = 100.

(d) “Video store” environ-
ment, triangle-based subdivi-
sion with 5000 triangles.

Figure 11: Comparison of pixel-based sampling versus triangle-based sampling.

l

Env Map Resolution Spherical subdivisions Render time L2 Error, “grace” L2 Error, “video store”
100 x 50 5,000 177 sec 0.96255 1.744533
150 x 75 11,250 283 sec 0.80915 1.462526
180 x 90 16,200 379 sec 0.78055 1.290449
200 x 100 20,000 449 sec 0.62211 1.135643

5000 Triangles 5,000 390 sec 0.58214 0.367410

Table 1: Comparison of running time to image error under the grace and video store environments, using a naive pixel-based scheme. The
bottom row is the triangle-based scheme outlined in the paper. All images were rendered at 165 samples per pixel.

A Clipping Spherical Triangles

Given a spherical triangle ABC defined by vertices A, B, and C, and
a hemisphere centered about n, Ωn, we want to compute whether the
triangle overlaps the hemisphere, and if so, to describe the region
of overlap. First, we test if the dot product of each vertex with n is
positive or negative. Let t be the number of vertices with positive
dot product.

If t = 0, the triangle is fully outside the hemisphere.
If t = 3, the triangle is fully inside the hemisphere.
If t = 2, then the triangle partially overlaps and the intersection

of ABC with Ωn can be described as the union of two spherical
triangles. Let A be the vertex that such that A · n < 0. Let D be
the point where the great arc that bounds Ωn intersects the great arc
segment AB, D = ∂Ωn∩AB. This is computed as D =±n×(A×B),
where the sign is chosen so that D lies between A and B. Similarly
let E = ∂Ωn ∩AC. Then the two resulting triangles are BCD and
CED.

If t = 1, then the triangle partially overlaps Ωn and the intersec-
tion of ABC with Ωn is a single spherical triangle. Let A be the
vertex such that A ·n > 0. Define D and E as above. The resulting
triangle is ADE.


