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Motivation 
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Goal: Real-time Physics 

Approach 1: 

Develop off-line serial algorithm today 

Wait a few years for 20 GHz CPUs 

 

This will not work! 

 

Clock speeds not increasing  

if anything, going down 

Core counts increasing 

No help if your algorithm isn’t parallel 
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Goal: Real-time Physics 

Approach 2: 

Develop data parallel method 

Each generation, core count (roughly) doubles, so wait 

log2(Target FLOPS / Current FLOPS) years 

 

This works, but might not be enough 

 

Games should look better in the future 

Do more FLOPS => “better looking” ? 

Asymptotic scaling matters 

O(n2) method won’t keep pace with increasing FLOPS as 

well as O(n) method 

 



© NVIDIA Corporation 2010 

A Better Goal: Scalable Physics 

Data Parallel, Linear Time, Scalable Quality  

Visual fidelity improves as processor throughput increases 

Resolution is obvious quality knob, but must be 

pared with appropriate method 

low viscosity method + high resolution = high visual 

quality 

 

 

x

Lo-Res, High Viscosity Lo-Res, Low Viscosity Hi-Res, Low Viscosity 
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Outside the box 

“Fluid-in-a-box” is boring, too restrictive 

 

Particles make ideal rendering proxies 
geometric complexity scales with GPU throughput 

Fit into existing game FX pipelines 

Many rendering options (several at I3D10…) 

 

Idea: couple particle system with grid-based fluid 
simulation 

Track near-field “region of interest” with simulation grid 

Allow particles to leave simulation grid (far field) 

Obscure transition point  
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Interactive Fluid Simulation 
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Calculate near-field fluid on grid 

Fluid velocities drive particle    motions 
 

1. Calculate Fluid Velocities       on Regular Grid  

 2nd-Order Accurate CUDA Multigrid Solver 

 

2. Interpolate Fluid Velocities      onto Particles 

 3D Interpolation in CUDA 

 

3. Advance Particles 

 CUDA Particle System 

 

4. Render Particles 

 CUDA - OpenGL Interop 
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Key Ingredients 

Translating grid via Galilean invariance [Shah 2004] 

+ 2nd-order semi-Lagrangian advection [Selle 2008] 

+ IOP-based pressure solver [Molemaker 2008] 

+ Half-angle rendering algorithm [Ikits 2004] 

+ Decoupled particle system from fluid sim 

+ Many CUDA optimizations 

+ Many stability fixes 

 

=  Interactive fluid-driven effects* 

 

*see paper for details… too much to cover here 
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Region Tracking: Galilean Invariance 

= 
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Pressure Solver 

Enforced flux at boundary must propagate 

instantaneously via pressure  

(incompressible fluid = infinite speed of sound) 

 

=> pressure solver must fully converge 

 

=> Cannot use PCG, since it doesn’t converge fast 

enough 

 

=> Must use either FFT or Multigrid  

(FFT requires periodic boundaries) 
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Multigrid Pressure Solver 

Grid Size Mean Time Std Dev Time Time / 

Unknown 

L∞ Error 

Reduction 

64 x 16 x 64 14.8 ms 0.2 ms 22.6 x 10-5 ms 8,567 X 

128 x 32 x 128 26.4 ms 0.2 ms 5.0 x 10-5 ms 11,079 X 

256 x 64 x 256 84.6 ms 0.5 ms 2.0 x 10-5 ms 11,856 X 

Algorithm based on [Molemaker 2008] [Yavneh 1996] 

Implementation described in [Cohen 2009] 
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Particle System 

Smooth transition 

from fluid to particles: 
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Rendering 

Sort particles by depth via CUDA Radix Sort 

dead particles sorted to end of list => no deletion needed 

Attach noise function per particle, animated to 

erode over particle lifespan 
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[Video] 
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GPU Optimizations 
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NVIDIA next-gen “Fermi” architecture 

Digression: CUDA Architecture 



© NVIDIA Corporation 2010 

CUDA Execution Model 

Register File 

Scheduler 

Dispatch 

Scheduler 

Dispatch 

Load/Store Units x 16 

Special Func Units x 4 

Interconnect Network 

64K Configurable 

Cache/Shared Mem 

Uniform Cache 

Core 

Core 

Core 

Core 

Core 
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Core 

Core 

Core 
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Core 

Core 

Core 

Core 

Core 

Core 

Instruction Cache 

SIMT (Single Instruction Multiple Thread) execution 

threads run in groups of 32 called warps 

threads in a warp share instruction unit 

1 instruction x 32 threads per clock 

HW automatically handles divergence 

divergence penalty = # different control  

       paths 

Hardware multithreading 

HW relies on threads to hide latency 

HW resource allocation & thread 

scheduling 

any warp not waiting for something can run 

context switching is free 
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Optimization: Per-warp particles 

Particle flow-of-control decided per-warp, rather 

than per-particle 

 

Particle birth/death decided by PRNG 

Seed set based on (Particle ID) / 32 

All particles in warp follow same flow of control 

 

2x performance improvement 

 

See paper for more like this 
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Results 
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Performance 

64 x 16 x 64 128 x 32 x 128 256 x 64 x 256 

1 car 26(20) 25(16) 11 (8) 

2 cars 26(15) 16(11) 5 (NA) 

3 cars 19 (12) 11(8) NA (NA) 

Frames per second 

Single GPU (Dual GPU*) 

* Rendering on GPU 0, Simulation on GPU 1 
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Relative Performance 

Present Work [Crane 2007] [Long 2009] 

32 x 32 x 32 182 233 96.3 

64 x 64 x 64 86 65 14.3 

128 x 128 x 128 22 10 1.6 

[Crane 2007] and Present work on GTX285 

[Long 2009] on quad-core CPU (reported in their paper) 

Frames per Second 

(Simulation Only) 
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Other applications 

[see DarkVoid video] 
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Thanks! 

DevTech Team 

NVIDIA Research 

PhysX and APEX Teams 

DarkVoid 

 

 

 Questions ? 


