
Interactive Fluid-Particle Simulations

using Translating Eulerian Grids

2010 Interactive 3D Graphics and Games

Jonathan Cohen Sarah Tariq Simon Green

Interactive Fluid-Particle Simulations

using Translating Eulerian Grids

2010 Interactive 3D Graphics and Games

Jonathan Cohen Sarah Tariq Simon Green Jonathan M. Cohen

© NVIDIA Corporation 2010

Motivation

© NVIDIA Corporation 2010

Goal: Real-time Physics

Approach 1:

Develop off-line serial algorithm today

Wait a few years for 20 GHz CPUs

This will not work!

Clock speeds not increasing

if anything, going down

Core counts increasing

No help if your algorithm isn’t parallel

© NVIDIA Corporation 2010

Goal: Real-time Physics

Approach 2:

Develop data parallel method

Each generation, core count (roughly) doubles, so wait

log2(Target FLOPS / Current FLOPS) years

This works, but might not be enough

Games should look better in the future

Do more FLOPS => “better looking” ?

Asymptotic scaling matters

O(n2) method won’t keep pace with increasing FLOPS as

well as O(n) method

© NVIDIA Corporation 2010

A Better Goal: Scalable Physics

Data Parallel, Linear Time, Scalable Quality

Visual fidelity improves as processor throughput increases

Resolution is obvious quality knob, but must be

pared with appropriate method

low viscosity method + high resolution = high visual

quality

x

Lo-Res, High Viscosity Lo-Res, Low Viscosity Hi-Res, Low Viscosity

© NVIDIA Corporation 2010

Outside the box

“Fluid-in-a-box” is boring, too restrictive

Particles make ideal rendering proxies
geometric complexity scales with GPU throughput

Fit into existing game FX pipelines

Many rendering options (several at I3D10…)

Idea: couple particle system with grid-based fluid
simulation

Track near-field “region of interest” with simulation grid

Allow particles to leave simulation grid (far field)

Obscure transition point

© NVIDIA Corporation 2010

Interactive Fluid Simulation

© NVIDIA Corporation 2010

Calculate near-field fluid on grid

Fluid velocities drive particle motions

1. Calculate Fluid Velocities on Regular Grid

 2nd-Order Accurate CUDA Multigrid Solver

2. Interpolate Fluid Velocities onto Particles

 3D Interpolation in CUDA

3. Advance Particles

 CUDA Particle System

4. Render Particles

 CUDA - OpenGL Interop

© NVIDIA Corporation 2010

Key Ingredients

Translating grid via Galilean invariance [Shah 2004]

+ 2nd-order semi-Lagrangian advection [Selle 2008]

+ IOP-based pressure solver [Molemaker 2008]

+ Half-angle rendering algorithm [Ikits 2004]

+ Decoupled particle system from fluid sim

+ Many CUDA optimizations

+ Many stability fixes

= Interactive fluid-driven effects*

*see paper for details… too much to cover here

© NVIDIA Corporation 2010

Region Tracking: Galilean Invariance

=

© NVIDIA Corporation 2010

t

-t.x

-t.x

-t.y -t.y

© NVIDIA Corporation 2010

Pressure Solver

Enforced flux at boundary must propagate

instantaneously via pressure

(incompressible fluid = infinite speed of sound)

=> pressure solver must fully converge

=> Cannot use PCG, since it doesn’t converge fast

enough

=> Must use either FFT or Multigrid

(FFT requires periodic boundaries)

© NVIDIA Corporation 2010

Multigrid Pressure Solver

Grid Size Mean Time Std Dev Time Time /

Unknown

L∞ Error

Reduction

64 x 16 x 64 14.8 ms 0.2 ms 22.6 x 10-5 ms 8,567 X

128 x 32 x 128 26.4 ms 0.2 ms 5.0 x 10-5 ms 11,079 X

256 x 64 x 256 84.6 ms 0.5 ms 2.0 x 10-5 ms 11,856 X

Algorithm based on [Molemaker 2008] [Yavneh 1996]

Implementation described in [Cohen 2009]

© NVIDIA Corporation 2010

Particle System

Smooth transition

from fluid to particles:

© NVIDIA Corporation 2010

Rendering

Sort particles by depth via CUDA Radix Sort

dead particles sorted to end of list => no deletion needed

Attach noise function per particle, animated to

erode over particle lifespan

© NVIDIA Corporation 2010

[Video]

© NVIDIA Corporation 2010

GPU Optimizations

© NVIDIA Corporation 2010

D
R

A
M

 I
/F

H

O
S

T
 I
/F

G

ig
a
 T

h
re

a
d

D

R
A

M
 I

/F
 D

R
A

M
 I/F

D

R
A

M
 I/F

D

R
A

M
 I/F

D

R
A

M
 I/F

L2

NVIDIA next-gen “Fermi” architecture

Digression: CUDA Architecture

© NVIDIA Corporation 2010

CUDA Execution Model

Register File

Scheduler

Dispatch

Scheduler

Dispatch

Load/Store Units x 16

Special Func Units x 4

Interconnect Network

64K Configurable

Cache/Shared Mem

Uniform Cache

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Core

Instruction Cache

SIMT (Single Instruction Multiple Thread) execution

threads run in groups of 32 called warps

threads in a warp share instruction unit

1 instruction x 32 threads per clock

HW automatically handles divergence

divergence penalty = # different control

 paths

Hardware multithreading

HW relies on threads to hide latency

HW resource allocation & thread

scheduling

any warp not waiting for something can run

context switching is free

© NVIDIA Corporation 2010

Optimization: Per-warp particles

Particle flow-of-control decided per-warp, rather

than per-particle

Particle birth/death decided by PRNG

Seed set based on (Particle ID) / 32

All particles in warp follow same flow of control

2x performance improvement

See paper for more like this

© NVIDIA Corporation 2010

Results

© NVIDIA Corporation 2010

Performance

64 x 16 x 64 128 x 32 x 128 256 x 64 x 256

1 car 26(20) 25(16) 11 (8)

2 cars 26(15) 16(11) 5 (NA)

3 cars 19 (12) 11(8) NA (NA)

Frames per second

Single GPU (Dual GPU*)

* Rendering on GPU 0, Simulation on GPU 1

© NVIDIA Corporation 2010

Relative Performance

Present Work [Crane 2007] [Long 2009]

32 x 32 x 32 182 233 96.3

64 x 64 x 64 86 65 14.3

128 x 128 x 128 22 10 1.6

[Crane 2007] and Present work on GTX285

[Long 2009] on quad-core CPU (reported in their paper)

Frames per Second

(Simulation Only)

© NVIDIA Corporation 2010

Other applications

[see DarkVoid video]

© NVIDIA Corporation 2010

Thanks!

DevTech Team

NVIDIA Research

PhysX and APEX Teams

DarkVoid

 Questions ?

