
An Interface for Sketching 3D Curves

Jonathan M. Cohen, Lee Markosian, Robert C. Zeleznik, and John F. Hughes� Ronen Barzel y

Brown Universityz PIXAR

Abstract

The ability to specify nonplanar 3D curves is of fundamen-
tal importance in 3D modeling and animation systems. Ef-
fective techniques for specifying such curves using 2D in-
put devices are desirable, but existing methods typically re-
quire the user to edit the curve from several viewpoints. We
present a novel method for specifying 3D curves with 2D in-
put from a single viewpoint. The user �rst draws the curve
as it appears from the current viewpoint, and then draws its
shadow on the 
oor plane. The system correlates the curve
with its shadow to compute the curve's 3D shape. This
method is more \natural" than existing methods in that it
leverages skills that many artists and designers have devel-
oped from work with pencil and paper.

CR Categories: I.3.6 [Computer Graphics]: Methodology
and Techniques|Interaction Techniques

Keywords: Curve Manipulation, 3D Modeling, Interac-
tive Shadows.

1 INTRODUCTION

Specifying 3D curves is one of the most important tasks that
a 3D user interface must support. Curves are used in mod-
eling and CAD systems to specify surface patches [2, 1], as
skeletal shapes for implicit surfaces [5], and to de�ne con-
trols for object deformations [18]. Animation systems and
VR applications use curves to specify motion and camera
paths [7, 14, 12].
Many authors have recognized the importance of specify-

ing curves directly [9, 10, 21, 4, 20, 13]. Although sketched
curves are imprecise by nature, sketching allows a user to
quickly create a curve that is close to the desired result,
even if she has little experience with the underlying curve
representation. A novice user can quickly create approxi-
mate curves because little overhead is required to learn the
interface. A trained artist can apply her existing drawing
skills to produce accurate curves because the interface more

�[jmc,lem,bcz,jfh]@cs.brown.edu
yronen@pixar.com
zBrown University Site of the NSF Science and Technology

Center for Computer Graphics and Scienti�c Visualization, Prov-
idence, RI 02912

closely matches the one she is used to { namely pencil and
paper.
The technique we present is an extension of the idea used

in [11, 20] that a point in 3D can be determined from its
image-space projection together with that of its \shadow."
(The \shadow" is just the vertical projection of the point
onto some horizontal surface.) We apply this idea to a
connected set of 3D points to de�ne a curve. With this
approach, the user sketches a curve directly into a scene
in two strokes: �rst drawing the curve as it appears from
the current viewpoint, and then sketching its approximate
\shadow." The e�ect is to rede�ne the 3D shape of the curve
while leaving its appearance unchanged. The user can then
re�ne portions of the curve by over-sketching either its pro-
jected image or that of its shadow. Although this technique
is less precise than existing ones, it lets the user quickly
sketch a reasonably correct shape that may be further re-
�ned with more conventional methods.

2 PREVIOUS WORK

Some techniques for editing curves are indirect in that they
require the user to modify parameters, e.g. spline con-
trol points or knot values, that in turn a�ect the curve's
shape. Other techniques allow direct manipulation of the
curve itself, such as the overdrawing paradigm described by
Baudel [4] and direct manipulation of spline curves [9, 10,
21]. The technique we present falls into this latter category.
Although much work has been done in sketching 2D

curves [4, 13, 3, 17], few systems have addressed the issue of
sketching curves in 3D. One notable exception is the 3-Draw
system [16], which uses Polhemus trackers attached to a sty-
lus to allow a designer to sketch in 3D with arm motions.
Commercial 3D modeling systems such as Maya and

3DStudio [1, 2] give the user a variety of techniques for creat-
ing and editing curves. Most of these, however, are indirect
(e.g. the user edits spline control points or intersects two
surfaces). In Maya a user can sketch a curve directly onto
a user-de�ned plane, or more generally onto a surface. Of
these techniques, only the latter constitutes a direct method
for specifying nonplanar curves. But the user can draw on
a surface only where nothing occludes it. To draw all the
way around a sphere, for example, the user must draw from
multiple camera positions. Thus, there are restrictions on
the types of curves that can be sketched from a single view.
The interface we present complements existing 3D mod-

eling systems by providing additional 
exibility for directly
sketching nonplanar curves.

3 OVERVIEW OF THE SYSTEM

We support four basic operations for sketching curves: draw-
ing a new curve in some plane, \overdrawing" a section of an
existing curve, rede�ning a curve's entire shadow, and over-
drawing a section of a curve's shadow. Figures 1, 2, 3, and 4



Figure 1: A single stroke creates the initial curve.

Figure 2: A second stroke de�nes the curve's shadow and
hence its 3D shape.

Figure 3: The dashed line indicates an overdraw stroke.

Figure 4: The system blends the overdraw with the original
curve to get the �nal result.

illustrate the steps involved in creating and editing a curve.
To distinguish between operations that edit the shadow and
operations that edit the curve, the user selects either shadow
mode or curve mode via a menu or keyboard shortcut.
When the user draws a stroke in curve mode or shadow

mode, the system determines whether the stroke is an \over-
draw" by checking whether it starts and ends near and nearly
parallel to an existing curve or shadow. If so, we merge it
into the existing curve using a method similar to that de-
scribed in [4]. In curve mode, if the stroke is not an overdraw,
the system interprets it as a new curve that is projected onto
a plane; the plane is determined by a set of heuristics de-
scribed below.
To de�ne a shadow, the user (in shadow mode) draws a

stroke beneath the curve to be modi�ed. If the stroke ap-
pears to be an overdraw, the system blends it into an existing
shadow. If there is no existing shadow with which the new
shadow can be merged, we test whether its endpoints lie ap-
proximately below some curve's endpoints. If so, we take
this to mean than the the curve's shadow was entirely re-
drawn. (If not, the stroke is rejected.) Finally, we reproject
the curve back into the scene to match its new shadow.

3.1 Drawing Curves and Shadows

We represent 3D curves as parameterized polylines, i.e., as
piecewise linear curves de�ned by a mapping from [0; 1] !
R3. Before they are used to de�ne curves or shadows, input
strokes are smoothed in the following way. First we �lter
the stroke to remove all points whose screen-space distance
is less than some threshold (e.g. 25 pixels) from the previous
point. We �t a Catmull-Rom spline [8] to the remaining
points and sample the spline every few pixels to generate a

smooth-looking polyline.1

When a curve is �rst drawn, we project the 2D stroke
onto a plane in world space to create a 3D planar curve. We
choose the plane as follows. If either endpoint appears to lie
on an existing object (or curve), we take this as intentional
and place the endpoint in 3D so that it lies on the existing
object. We then choose a plane that contains the endpoint
(or points). Since one or two points do not uniquely deter-
mine a plane, we choose, among all planes containing them,
the one that is most nearly screen-parallel.
If neither endpoint appears to lie on an existing object in

the scene, we determine which plane to use from the angle of
the camera. If the camera is looking down, we use the 
oor
plane, and if the camera is at an oblique angle, we use the
plane perpendicular to the 
oor plane that is most nearly
screen-parallel.
A shadow is a 3D curve obtained by projecting another

3D curve along a �xed vector, which we call the projection
vector, onto some surface. In this discussion, we always use
the world Y axis as the projection vector, and we always
project onto the 
oor plane. These choices are arbitrary {
we could just as easily use the world X vector and let the user
draw shadows on a wall. Also, note that in all of our exam-
ples, the shadow is a planar curve. This assumption is not
necessary for any of the algorithms described below. Thus,
we could project shadows onto rolling terrain, for instance.
The key feature of this system is the ability to edit a

curve via its shadow. As noted in [11, 20, 19], a point's
location is determined uniquely by its appearance from an
oblique camera position and by its shadow. We extend this
idea to curves: the shape of a 3D curve is determined by its
image-space projection and its shadow.2 Thus, to modify
a curve's shape in our system, the user redraws its shadow.
This rede�nes the curve's shape while leaving its appearance
from the current camera position unchanged.
It can be diÆcult to draw a valid shadow for a given curve.

To facilitate this, we draw vertical guidelines at both ends
of the curve. These lines provide feedback that helps the
user align the shadow with the curve. Also, the matching
algorithm does not require that the curve and shadow be
exactly aligned, only that they be \close," as explained in
the next section.

3.2 Correlating Curves with Shadows

Once a curve's shadow or image-space projection has been
rede�ned, we project the curve back into the scene using the
following method.
We assume either a perspective or orthogonal projection,

with the restriction that the camera's \look vector" is not
close to parallel with the projection vector. In a perspective
projection, the vanishing point for vertical lines must be o�
the screen. This allows us to de�ne a left-to-right ordering of
3D points (see �gure 5). To test if a point A is left or right of
another point B, we project A into the image. Then we take
the line parallel to the projection vector running through A's
world location and project this line into the image. This line
(call it l) partitions the image into two sections, one to the
left and one to the right. If the image-space projection of
B is to the left of l, we say B is image-space left of A and
similarly for image-space right. If B lies on l, we say A and

1This smoothing step, while independent of the overall tech-
nique, is important since noise in the input device propagates to
the �nal 3D curves.

2In certain cases described below, the curve's 3D shape is not
determined uniquely.



A C

B

l

Figure 5: A and B are image-space aligned through the line
l, and C is image-space right of both of them.

C

B

A

Figure 6: A, B, and C are critical points of this curve.

A
B

C

Figure 7: The shadow de�nes a ruled surface with a silhou-
ette above the interior critical point of the shadow, B.

B are image-space aligned. If B is within a distance d of l,
we say B is aligned to within d of A 3.
We de�ne a point on a curve to be a critical point if some

neighborhood of the point lies entirely to the right or left
of the point in image space. Note that by this de�nition,
the �rst and last points of a curve are critical points (see
�gure 7). A span is the section of a curve between two
critical points.
The key observation we use to match a curve with its

shadow is that the shadow de�nes a ruled surface formed by
extruding the shadow along the projection vector. An inte-
rior critical point in the shadow corresponds to a silhouette
of the surface, as shown in �gure 7.
To rede�ne a curve's 3D shape from its shadow, we must

project the curve onto this possibly many-layered surface.
To do this, we must determine onto which layer of the
shadow surface we should project each point of the curve. In
general, a critical point on the shadow must correspond with
a critical point on the curve. This is because the curve must
turn around where the shadow surface turns around in order
to stay on the shadow surface, as shown in �gure 8. Note
that there may be critical points in the curve that do not
correspond to critical points of the shadow, as in �gure 9.
If there is no way to project the curve onto the surface

so that the resulting 3D curve is continuous, the shadow is

3Note that in a perspective projection, aligned to within d is
not a symmetric relation.

A

C B

Figure 8: The curve must turn around at B to stay on the
surface.

Figure 9: The curve may have more critical points than the
shadow and still be valid.

Figure 10: There is no way to project this curve onto the
surface to get a continuous 3D curve.

invalid and we reject it. Figure 10 shows an invalid shadow.
To create the correspondence between layers of the

shadow surface and spans of the curve, we need to match
critical points of the shadow with critical points of the curve.
First, we �nd the critical points of the shadow and curve.
Let c0; c1; : : : ; cn be the list of critical points of the curve,
sorted by parameter value, and s0; s1; : : : ; sm be the sorted
list of the shadow's critical points.
To begin, we verify that c0 corresponds with s0. (At this

point, we may have to reverse the parameterization of the
curve to make these points match.) We iterate through the
critical points of the shadow in order and attempt to match
each point si with some critical point on the curve. We do
this as follows.
First, let cj be the next unmatched critical point on the

curve. If cj is aligned to within 25 pixels of si, then cj is
matched with si, and we go on to si+1. Otherwise, we test
if cj is between si�1 and si (in terms of the image-space
left-to-right ordering). If not, then there is no valid match
because there is no shadow underneath some span of the
curve adjacent to cj. Also, if cj is the �nal endpoint of
the curve and is unmatched, then there is no valid match.
Finally, we increment j and repeat for the next critical point
on the curve.
The system can match a shadow with a curve even when

the shadow does not align exactly with the curve, as follows.
After creating a correspondence between critical points, we



Figure 11: The dashed line indicates the original shadow.
The solid line indicates the shadow after it has been adjusted
to match the curve.

Figure 12: The curve de�nes a surface containing all rays
from the viewpoint through each point on the curve. We
intersect this with the shadow surface to get the �nal 3D
curve.

Figure 13: The shadow and curve do not determine a unique
3D curve. This is because all four endpoints are image-space
aligned.

deform the shadow so that all matching critical points are
precisely image-space aligned. This is done by rotating and
scaling each span of the shadow to align it with the corre-
sponding span of the curve, as shown in �gure 11. This step
allows the user to sketch an approximate shadow, leaving it
to the system to ensure that curve and shadow are precisely
aligned.
We now have a valid aligned shadow and a correspon-

dence between each span of the shadow and some span of
the curve. Just as the shadow de�nes a particular surface, we
can think of the curve as de�ning a unique surface containing
all rays extending from the camera through the image-space
projection of the curve. We intersect each portion of the
curve surface with the corresponding layer of the shadow
surface to produce a section of the 3D curve, as shown in
�gure 12. Because we use a piecewise linear representation
for our curves, we intersect these two surfaces by breaking
them up into planar segments and intersecting the corre-
sponding segments. We splice all such sections together to
get the �nal 3D curve.
Near a critical point on the shadow, the tangent plane to

the shadow surface is oriented nearly edge-on to the camera.
This has the e�ect of magnifying noise in the 2D input: that
is, small variations in the input stroke result in large varia-
tions in depth for the 3D curve. To alleviate this problem,
we remove points that are nearly aligned to critical points of
the shadow, replacing them with a smooth spline that joins

Figure 14: The three vertical lines are struts. The dashed
line indicates the original position of the shadow. Dragging
the center strut downwards moves the shadow along the 
oor
while �xing the appearance of the curve.

neighboring sections of the 3D curve. Finally, we perform
the same �ltering and smoothing operations described above
to improve the smoothness of the �nal curve.4

In certain cases this algorithm may produce an unintended
result. This can happen when the curve and shadow have
multiple critical points that are image-space aligned. One
example is shown in �gure 13. In a case such as this, the
image-space curve and shadow do not de�ne a unique 3D
curve. Our algorithm will �nd one possible 3D curve, but it
might not be the intended one.

3.3 Strut Manipulation

We can consider the problem of correlating a curve with a
shadow to be an instance of the general problem of matching
features in two signals. From this point of view, we wish to
extract the \salient" features of the image-space curve and
shadow, register the two curves to align these features, and
�nally calculate the �nal 3D curve.
In our current system, we take into account only the crit-

ical points of the image-space curve and shadow. That is,
critical points are the only features we consider to be salient.
The system ignores other features, such as bends, because
we assume that the user will draw such features in correct
alignment (�gure 17 shows what happens when this is as-
sumption is incorrect).
It might be useful to provide automatic registration of

such features { one possible way to do this would be to adapt
the dynamic timewarping algorithm from [6] to register the
curve with the shadow.
Though we do not currently support this more general

notion of signal matching, we do let the user explicitly align
certain features. To facilitate this, we allow the user to draw
struts, which are lines parallel to the projection vector that
connect a �xed point on the shadow with a �xed point on the
curve. After placing a strut, the user may drag its bottom up
or down. This has the e�ect of adjusting the shadow while
leaving the appearance of the curve unchanged, as shown in
�gure 14. The shadow is a�ected just in the span between
the two neighboring struts.

4 DISCUSSION

Color Plates 14 - 17 show our system in action.
This system is well suited for applications that require

fast speci�cation of approximate 3D curves. Applications
that require more precise curves might still bene�t from this
technique, because of the lack of overhead required and the
simplicity of the interface. In one scenario, the user would

4Because we perform these �ltering and smoothing steps, the
appearance of the curve is not constant { it often changes by a
few pixels after each edit.



quickly sketch an approximate curve, then re�ne its shape
with more conventional techniques.
We mentioned previously that our technique can be ex-

tended to allow shadows on walls or nonplanar surfaces.
There is also no reason to restrict the user to drawing the
curve and shadow from the same point of view. The user
might draw the shadow from an overhead camera position
(thus specifying the shadow more accurately), then sketch
the curve from an oblique viewpoint.
A limitation of this method is that it can be quite hard

to judge what the shadow should look like for complex 3D
curves, especially from an oblique viewpoint. We have ob-
served that users in our lab, even those with artistic training,
have considerable diÆculty drawing corkscrews and other
spiraling shapes. In such cases, a better solution might be
to use a 3D input device such as a Phantom or a 3D tracker.

5 FUTURE WORK

We use context-sensitive commands to indicate over-
sketching operations and keyboard modi�ers to indicate
modes and to di�erentiate between di�erent editing oper-
ations. Although this works, it is neither consistent nor
supported by user studies. We would like to �nd a more
streamlined user interface, perhaps using marking menus or
gestural commands [15]. We would also like to have more
users try this system, especially users with artistic training
but little experience with computer graphics tools.
Finally, we have started to use this curve-sketching tech-

nique within a sketch-based free-form modeling system. We
believe this interface is a good starting point from which to
build a modeling system that leverages a user's talent with
pencil and paper to create more complicated shapes than
was possible with the original SKETCH system [20].

6 ACKNOWLEDGMENTS

We thank Andries van Dam and the Graphics Group.
This work is supported in part by the NSF Graphics
and Visualization Center, Advanced Network and Services,
Alias/Wavefront, Autodesk, IBM, Intel, Microsoft, National
Tele-Immersion Initiative, Sun Microsystems, and TACO.

References

[1] Alias / Wavefront. Maya, 1.0 edition, 1998.

[2] Autodesk. 3D Studio MAX, 1996.

[3] Michael J. Banks and Elaine Cohen. Realtime spline
curves from interactively sketched data. In Computer
Graphics (1990 Symposium on Interactive 3D Graph-
ics), pages 99{107, 1990.

[4] Thomas Baudel. A mark-based interaction paradigm
for free-hand drawing. In Proceedings of UIST 94, pages
185{192. ACM SIGGRAPH, 1994.

[5] Jules Bloomenthal and Brian Wyvill. Interactive tech-
niques for implicit modeling. In Computer Graphics
(1990 Symposium on Interactive 3D Graphics), pages
109{116, 1990.

[6] Armin Bruderlin and Lance Williams. Motion signal
processing. In SIGGRAPH 95 Conference Proceedings,
pages 97{104. ACM SIGGRAPH, August 1995.

[7] M. F. Cohen. Interactive spacetime control for anima-
tion. In SIGGRAPH 92 Conference Proceedings, pages
293{302. ACM SIGGRAPH, July 1992.

[8] Gerald Farin. Curves and Surfaces for Computer Aided
Geometric Design. Academic Press, third edition, 1993.

[9] Barry M. Fowler and Richard H. Bartels. Constraint-
based curve manipulation. IEEE Computer Graphics
and Applications, pages 43{49, September 1993.

[10] Cindy Grimm and Matthew Ayers. A framework for
synchronized editing of multiple curve representations.
In EUROGRAPHICS '98, pages C{31 { C{40, 1998.

[11] Kenneth P. Herndon, Robert C. Zeleznik, Daniel C.
Robbins, D. Brookshire Conner, S. Scott Snibbe, and
Andries van Dam. Interactive shadows. In Proceedings
of UIST 92, pages 1{6. ACM SIGGRAPH, November
1992.

[12] T. Igarashi, R. Kadobayashi, K. Mase, and H. Tanaka.
Path drawing for 3d walkthrough. In Proceedings of
UIST 98, pages 173{174. ACM SIGGRAPH, 1998.

[13] T. Igarashi, S. Matsuoka, S. Kawachiya, and H. Tanaka.
Pegasus: A drawing system for rapid geometric design.
In CHI'98 Summary (ACM Conference on Human Fac-
tors in Computing Systems), pages 24{25, 1998.

[14] R. Pausch, T. Burnette, D. Brockway, and M. E.
Weiblen. Navigation and locomotion in virtual worlds
via 
ight into hand-held miniatures. In SIGGRAPH
95 Conference Proceedings, pages 399{400. ACM SIG-
GRAPH, 1995.

[15] Dean Rubine. Specifying gestures by example. In
SIGGRAPH 91 Conference Proceedings, pages 329{337.
ACM SIGGRAPH, August 1991.

[16] Emanuel Sachs, Andrew Roberts, and David Stoops.
3-draw: A tool for designing 3d shapes. IEEE Com-
puter Graphics and Applications, pages 18{25, Novem-
ber 1991.

[17] P.H. Schneider. An algorithm for automatically �tting
digitized curves. In A. Glassner, editor, Graphics Gems.
Academic Press, 1990.

[18] Karan Singh and Eugene Fiume. Wires: A geometric
deformation technique. In SIGGRAPH 98 Conference
Proceedings, pages 405{414. ACM SIGGRAPH, July
1998.

[19] Robert C. Zeleznik, Andrew S. Forsberg, and Paul S.
Strauss. Two pointer input for 3d interaction. In
Computer Graphics (1997 Symposium on Interactive
3D Graphics), April 1997.

[20] Robert C. Zeleznik, Kenneth P. Herndon, and John F.
Hughes. Sketch: An interface for sketching 3d scenes.
In SIGGRAPH 96 Conference Proceedings, pages 163{
170. ACM SIGGRAPH, August 1996.

[21] J. M. Zheng, K.W. Chan, and I. Gibson. A new ap-
proach for direct manipulation of free-form curves. In
EUROGRAPHICS '98, pages C{327 { C{334, 1998.



(a) (b)

Figure 15: The rope in the tetherball scene was drawn from the viewpoint in [a]. Figure [b] shows the same scene from a
di�erent viewpoint.

(a) (b)

Figure 16: The user has sketched a camera path through this virtual environment. The curve was created from the viewpoint
in [a]. Figure [b] shows the scene from a di�erent viewpoint.

(a) (b)

Figure 17: In color plate [a] we have intentionally misaligned the bends in the shadow and the curve. Note in �gure [b] how
the shape of the 3D curve has two bends while the sketched curve and shadow each have one.


