
Abstract of \Systems for Sketching in 3D" by Jonathan Cohen, May 2000.

In this thesis we describe two systems for sketching in 3D with a 2D input device.

The �rst system allows the user to draw 3D stick �gures. This system includes a novel

technique for specifying 3D curves with 2D input from a single viewpoint. The user �rst

draws the curve as it appears from the current viewpoint, and then draws its shadow on

the oor plane. The system correlates the curve with its shadow to compute the curve's

3D shape. This method is more \natural" than existing methods in that it leverages skills

that many artists and designers have developed from work with pencil and paper.

The second system, Harold, combines ideas from existing techniques and introduces new

concepts to make an interactive system for creating 3D worlds. The interface paradigm in

Harold is drawing: all objects are created simply by drawing them with a 2D input device.

Most of the 3D objects in Harold are collections of planar strokes that are reoriented in

a view-dependent way as the camera moves through the world. Virtual worlds created in

Harold are rendered with a stroke-based system so that a world will maintain a hand-drawn

appearance as the user navigates through it. Harold is not suitable for representing certain

classes of 3D objects, especially geometrically regular or extremely asymmetric objects.

However, Harold supports a large enough class of objects that a user can rapidly create

expressive and visually rich 3D worlds.

We conclude with a discussion of 3D sketch-based interfaces in general, and propose a

framework for analyzing them. From this analysis, we propose interface design principles

and a general interface design methodology. We demonstrate this methodology by designing

a system for sketching motion paths in 3D.
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Chapter 1

Introduction

Interactive 3D computer graphics has grown out of the needs and ideas of the engineering

and CAD communities. The original interactive graphics systems (most of which were in

2D, e.g. Sutherland's Sketchpad system [41]) were created with mechanical design as their

prototypical applications. This history is reected in many of the concepts and paradigms

that permeate modern 3D computer graphics. An engineer, for example, is likely to be

familiar with concepts from di�erential geometry such as tangent vectors, di�erentiability,

and manifolds. The result is that a typical interactive modeling tool's interface might

assume some understanding of, say, spline patches, surface modeling, or algebraic surfaces.

This engineering-based approach has led to rapid development in the �eld of inter-

active computer graphics by allowing programmers and researchers to exploit computers'

strength, mathematical modeling. The result has been the creation of extremely powerful

and expressive computer graphics tools. A side e�ect, however, had been that the burden

for translating mental models and visual design into a form computers can understand is

placed primarily on human artists and designers.

Current popular graphics systems such as Maya [1] or 3D Studio [2], while powerful

and useful, force users to learn to think in terms of the computer's mathematical models.

While talented artists can learn to use these systems and are able to create expressive and

complex images, using these systems is much more diÆcult for those without the time or

training required to learn about the mechanics of subdivision surfaces and spline patches.

As computing power increases, and with growing interest in the creation of computer

systems usable by people with minimal technical training, researchers have begun to explore

ways of interacting with computers that allow users to express themselves more \naturally."
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For this to happen, computers must take over the task of converting these natural instruc-

tions into operations on mathematical models. In computer graphics, this research direction

has materialized in the form of sketch-based systems. The appeal of sketch-based interfaces

for computer graphics is summarized by Zeleznik et al. in [47], \Traditionally, people have

attacked conceptual design with paper and pencil, not with computers, even though com-

puter models o�er numerous advantages. The reasons for this include the low overhead of

a single-tool interface (pencil), the lack of special knowledge needed to draw, the ease with

which many kinds of changes can be made, and the fact that precision is not required to

express an idea."

The problem that we investigate in this thesis is how to create interactive computer

graphics systems that allow the user to focus exclusively on the visual and intuitive tasks

of specifying \what something looks like," while letting the computer infer the necessary

mathematical models. What types of mathematical models are suited to these tasks? What

is hard about this problem, and what constraints exist on possible solutions? What ap-

proaches have been tried, which approaches are feasible, and which are not? Are there

general principles we can apply to help design an interactive system to suit our particular

needs?

In the rest of this thesis, we discuss two systems that we have created, one for sketching

3D stick �gures and curves, and the other, Harold, for sketching 3D scenes. In the �nal

chapter, we survey other sketch-based systems and propose some general principles that

may be useful for designing interactive systems for sketching in 3D.



Chapter 2

Sketching 3D curves

2.1 Introduction

Specifying 3D curves is one of the most important tasks that a 3D user interface must

support. Curves are used in modeling and CAD systems to specify surface patches [2, 1], as

skeletal shapes for implicit surfaces [6], and to de�ne controls for object deformations [38].

Animation systems and VR applications use curves to specify motion and camera paths [11,

31, 22].

Many authors have recognized the importance of specifying curves directly [14, 16, 49, 5,

47, 23]. Although sketched curves are imprecise by nature, sketching allows a user quickly

to create a curve that is close to the desired result, even if she has little experience with

the underlying curve representation. A novice user can quickly create approximate curves

because little overhead is required to learn the interface. A trained artist can apply her

existing drawing skills to produce accurate curves because the interface more closely matches

the one she is used to { namely pencil and paper.

The technique we present is an extension of the idea used in [17, 47] that a point in

3D can be determined from its image-space projection together with that of its \shadow."

(The \shadow" is just the vertical projection of the point onto some horizontal surface.)

We apply this idea to a connected set of 3D points to de�ne a curve. With this approach,

the user sketches a curve directly into a scene in two strokes: �rst drawing the curve as

it appears from the current viewpoint, and then sketching its approximate \shadow." The

e�ect is to rede�ne the 3D shape of the curve while leaving its appearance unchanged.

The user can then re�ne portions of the curve by over-sketching either its projected image

or that of its shadow. Although this technique is less precise than existing ones, it lets

3
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the user quickly sketch a reasonably correct shape that may be further re�ned with more

conventional methods.

2.2 Previous work

Some techniques for editing curves are indirect in that they require the user to modify

parameters, e.g. spline control points or knot values, that in turn a�ect the curve's shape.

Other techniques allow direct manipulation of the curve itself, such as the overdrawing

paradigm described by Baudel [5] and direct manipulation of spline curves [14, 16, 49]. The

technique we present falls into this latter category.

Although much work has been done in sketching 2D curves [5, 23, 4, 37], few systems

have addressed the issue of sketching curves in 3D. One notable exception is the 3-Draw

system [35], which uses Polhemus trackers attached to a stylus to allow a designer to sketch

in 3D with arm motions.

Commercial 3D modeling systems such as Maya and 3DStudio [1, 2] give the user a

variety of techniques for creating and editing curves. Most of these, however, are indirect

(e.g. the user edits spline control points or intersects two surfaces). In Maya a user can

sketch a curve directly onto a user-de�ned plane, or more generally onto a surface. Of these

techniques, only the latter constitutes a direct method for specifying nonplanar curves. But

the user can draw on a surface only where nothing occludes it. To draw all the way around

a sphere, for example, the user must draw from multiple camera positions. Thus, there are

restrictions on the types of curves that can be sketched from a single view.

The interface we present could complement existing 3D modeling systems by providing

additional exibility for directly sketching nonplanar curves.

2.3 Overview of the system

We support four basic operations for sketching curves: drawing a new curve in some plane,

\overdrawing" a section of an existing curve, rede�ning a curve's entire shadow, and over-

drawing a section of a curve's shadow. Figures 2.1, 2.2, 2.3, and 2.4 illustrate the steps

involved in creating and editing a curve. To distinguish between operations that edit the

shadow and operations that edit the curve, the user selects either shadow mode or curve

mode via a menu or keyboard shortcut.

When the user draws a stroke in curve mode or shadow mode, the system determines

whether the stroke is an \overdraw" by checking whether it starts and ends near and nearly
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Figure 2.1: A single stroke creates the initial curve.

Figure 2.2: A second stroke de�nes the curve's shadow and hence its 3D shape.

Figure 2.3: The dashed line indicates an overdraw stroke.

Figure 2.4: The system blends the overdraw with the original curve to get the �nal result.

parallel to an existing curve or shadow. If so, we merge it into the existing curve using a

method similar to that described in [5]. In curve mode, if the stroke is not an overdraw, the

system interprets it as a new curve that is projected onto a plane; the plane is determined

by a set of heuristics described below.

To de�ne a shadow, the user (in shadow mode) draws a stroke beneath the curve to be

modi�ed. If the stroke appears to be an overdraw, the system blends it into an existing

shadow. If there is no existing shadow with which the new shadow can be merged, we test

whether its endpoints lie approximately below some curve's endpoints. If so, we take this

to mean than the the curve's shadow was entirely redrawn. (If not, the stroke is rejected.)

Finally, we reproject the curve back into the scene to match its new shadow.

2.3.1 Drawing curves

We represent 3D curves as parameterized polylines, i.e., as piecewise linear curves de�ned

by a mapping from [0; 1] ! <3. Before they are used to de�ne curves or shadows, input

strokes are smoothed in the following way. First we �lter the stroke to remove all points

whose screen-space distance is less than some threshold (e.g. 25 pixels) from the previous
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point. We �t a Catmull-Rom spline [13] to the remaining points and sample the spline

every few pixels to generate a smooth-looking polyline.1

Some kinds of curve strokes, such as a straight line segment connecting two points, are

simple to interpret without extra information. Our system should make it relatively easy

for a user to draw these types of curves. However, for more complicated curves, we are not

all that concerned with being able to interpret them correctly at �rst, since the user will

rede�ne them by drawing a shadow. Here we discuss how we interpret strokes to place 3D

curves initially. Later, we describe our technique for editing these initial curves to create

more complicated shapes.

We have experimented with several heuristics for placing a 3D curves initially. In gen-

eral, these heuristics involve choosing a plane and projecting the stroke onto that plane to

produce a 3D curve. The system has a list of rules that it applies to each input stroke

to determine an appropriate plane. The advantage of this design is that we can rapidly

prototype several di�erent schemes for specifying how to interpret input strokes just by

changing the heuristics. A drawback, however, is that a heuristic tend to be speci�c for

particular classes of curve. For example, a set of heuristics tailored to make it easy to draw

human forms might not work very well for drawing six-legged insects, because the objects

have di�erent kinds of curves. One solution would be to have di�erent sets of heuristics

from which the user could select depending on the type of curve to be drawn, although this

adds a lot of complexity to the system.

Although we have experimented with several di�erent sets of heuristics, we list only a

few representative examples here. A general heuristic that applies to most stick �gures is:

Heuristic 1 If either endpoint appears to lie on an existing point or curve, we take this

as intentional and place the endpoint in 3D so that it lies on the existing object. We then

choose a plane that contains the endpoint (or points). Since one or two points do not

uniquely determine a plane, we choose, among all planes containing them, the one that is

most nearly screen-parallel.

A general heuristic that produces easily understandable results, yet is too simple to be of

much use is:

Heuristic 2 If neither endpoint appears to lie on an existing point or curve in the scene,

we determine which plane to use from the angle of the camera. If the camera is looking

1This smoothing step, while independent of the overall technique, is important since noise in the input

device propagates to the �nal 3D curves.
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down, we use the oor plane, and if the camera is at an oblique angle, we use the plane

perpendicular to the oor plane that is most nearly screen-parallel.

A heuristic for drawing curves coming up o� the oor plane is:

Heuristic 3 If both endpoints of the stroke lies over the oor plane, cast a ray through each

endpoint and intersect these two rays with the oor plane to get two points p and q. Say q

is closer to the camera position. Choose the vertical plane containing q that is most nearly

screen-parallel. Project the stroke onto this plane. If all points of the projected stroke lie

above the oor plane (i.e., have non-negative y-value), then use this projection as the curve.

If not, project the stroke onto the oor plane, and use this projection as the curve.

This rule makes it easy to sketch a leg for a human form, for example. The user begins a

stroke at the foot and extends it upward to the hip. The resulting curve will lie in a vertical

plane facing the camera as intended.

2.3.2 Details of shadows

A shadow is a 3D curve obtained by projecting another 3D curve along a �xed vector,

which we call the projection vector, onto some surface, called the projection surface. In this

discussion, we always use the world Y axis as the projection vector, and we always project

onto the oor plane. These choices are arbitrary { we could just as easily use the world

X vector and let the user draw shadows on a wall. Also, note that in all of our examples,

the shadow is a planar curve. This assumption is not necessary for any of the algorithms

described below. Thus, we could project shadows onto rolling terrain, for instance.

The key feature of this system is the ability to edit a curve via its shadow. As noted

in [17, 47, 46], a point's location is determined uniquely by its appearance from an oblique

camera position and by its shadow. We extend this idea to curves: the shape of a 3D curve

is determined by its image-space projection and its shadow.2 Thus, to modify a curve's

shape in our system, the user redraws its shadow. This rede�nes the curve's shape while

leaving its appearance from the current camera position unchanged.

It can be diÆcult to draw a valid shadow for a given curve. To facilitate this, we draw

vertical guidelines at both ends of the curve. These lines provide feedback that helps the

user align the shadow with the curve. Also, the matching algorithm does not require that

the curve and shadow be exactly aligned, only that they be \close," as explained in the

next section.
2In certain cases described below, the curve's 3D shape is not determined uniquely.
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2.3.3 Correlating curves with shadows

Once a curve's shadow or image-space projection has been rede�ned, we project the curve

back into the scene using the following method.

We assume either a perspective or orthogonal projection, with the restriction that the

camera's \look vector" is not close to parallel with the projection vector. (Recall that the

projection vector is the vector along which we project curves to get their shadows.) Further,

in the case of a perspective projection, we require that the vanishing point for lines parallel

with the projection vector be o�-screen. This allows us to de�ne a left-to-right ordering of

3D points (see �gure 2.5). To test if a point A is left or right of another point B, we project

A into the image. Then we take the line parallel to the projection vector running through

A's world location and project this line into the image. This line (call it l) partitions the

image into two sections, one to the left and one to the right. If the image-space projection

of B is to the left of l, we say B is image-space left of A and similarly for image-space right.

If B lies on l, we say A and B are image-space aligned. If B is within a distance d of l, we

say B is aligned to within d of A. 3

We de�ne a point p on a curve to be a critical point if all points in some neighborhood

of p on the curve lie to the right or left of the point in image space. Note that by this

de�nition, the �rst and last points of a curve are critical points (see �gure 2.6). A span is

the section of a curve between two critical points.

The key observation we use to match a curve with its shadow is that the shadow de�nes

a ruled surface formed by extruding the shadow along the projection vector. An interior

critical point in the shadow corresponds to a silhouette of the surface, as shown in �gure 2.7.

To rede�ne a curve's 3D shape from its shadow, we must project the curve onto this

possibly many-layered surface. To do this, we must determine onto which layer of the

shadow surface we should project each point of the curve. In general, a critical point on

the shadow must correspond with a critical point on the curve. This is because the curve

must turn around where the shadow surface turns around in order to stay on the shadow

surface, as shown in �gure 2.8. Note that there may be critical points in the curve that do

not correspond to critical points of the shadow, as in �gure 2.9.

If there is no way to project the curve onto the surface so that the resulting 3D curve is

continuous, the shadow is invalid and we reject it. Figure 2.10 shows an invalid shadow.

To create the correspondence between layers of the shadow surface and spans of the

3Note that in a perspective projection, aligned to within d is not a symmetric relation. In other words,

A may be aligned to within d of B, while B is not aligned to within d of A.
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A C

B

l

Figure 2.5: A and B are image-space aligned through the line l, and C is image-space right
of both of them.

C

B

A

Figure 2.6: A, B, and C are critical points of this curve.

A
B

C

Figure 2.7: The shadow de�nes a ruled surface with a silhouette above the interior critical
point of the shadow, B.
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A

C B

Figure 2.8: The curve must turn around at B to stay on the surface.

Figure 2.9: The curve may have more critical points than the shadow and still be valid.

Figure 2.10: There is no way to project this curve onto the surface to get a continuous 3D
curve.
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Figure 2.11: The dashed line indicates the original shadow. The solid line indicates the
shadow after it has been adjusted to match the curve.

curve, we need to match critical points of the shadow with critical points of the curve.

First, we �nd the critical points of the shadow and curve. Let c0; c1; : : : ; cn be the list of

critical points of the curve, sorted by parameter value, and s0; s1; : : : ; sm be the sorted list

of the shadow's critical points.

To begin, we verify that c0 corresponds with s0. (At this point, we may have to reverse

the parameterization of the curve to make these points match.) We iterate through the

critical points of the shadow in order and attempt to match each point si with some critical

point on the curve. We do this as follows.

First, let cj be the next unmatched critical point on the curve. If cj is aligned to within

25 pixels of si, then cj is matched with si, and we go on to si+1. Otherwise, we test if cj is

between si�1 and si (in terms of the image-space left-to-right ordering). If not, then there

is no valid match because there is no shadow underneath some span of the curve adjacent

to cj . Also, if cj is the �nal endpoint of the curve and is unmatched, then there is no valid

match. Finally, we increment j and repeat for the next critical point on the curve.

The system can match a shadow with a curve even when the shadow does not align

exactly with the curve, as follows. After creating a correspondence between critical points,

we deform the shadow so that all matching critical points are precisely image-space aligned.

This is done by rotating and scaling each span of the shadow to align it with the corre-

sponding span of the curve, as shown in �gure 2.11.4 This step allows the user to sketch an

approximate shadow, leaving it to the system to ensure that curve and shadow are precisely

aligned.

We now have a valid aligned shadow and a correspondence between each span of the

4For this reason, our previous claim that the shadow surface may be non-planar must be quali�ed. We

need to be able to warp the shadow in such a way that it still lies on the projection surface. When the

projection surface is planar, this is easy because we can scale along a vector orthogonal to the plane

normal and rotate about an axis parallel to the plane normal. When the projection surface is non-planar,

this may be more diÆcult.
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Figure 2.12: The curve de�nes a surface containing all rays from the viewpoint through each
point on the curve. We intersect this with the shadow surface to get the �nal 3D curve.

Figure 2.13: The shadow and curve do not determine a unique 3D curve. This is because
all four endpoints are image-space aligned.

shadow and some span of the curve. Just as the shadow de�nes a particular surface, we

can think of the curve as de�ning a unique surface containing all rays extending from the

camera through the image-space projection of the curve. We intersect each portion of the

curve surface with the corresponding layer of the shadow surface to produce a section of

the 3D curve, as shown in �gure 2.12. Because we use a piecewise linear representation

for our curves, we intersect these two surfaces by breaking them up into planar segments

and intersecting the corresponding segments. We splice all such sections together to get the

�nal 3D curve.

Near a critical point on the shadow, the tangent plane to the shadow surface is oriented

nearly edge-on to the camera. This has the e�ect of magnifying noise in the 2D input: that

is, small variations in the input stroke result in large variations in depth for the 3D curve.

To alleviate this problem, we remove points that are nearly aligned to critical points of

the shadow, replacing them with a smooth spline that joins neighboring sections of the 3D

curve. Finally, we perform the same �ltering and smoothing operations described above to

improve the smoothness of the �nal curve.5

In certain cases this algorithm may produce an unintended result. This can happen

when the curve and shadow have multiple critical points that are image-space aligned. One

example is shown in �gure 2.13. In a case such as this, the image-space curve and shadow

do not de�ne a unique 3D curve. Our algorithm will �nd one possible 3D curve, but it

5Because we perform these �ltering and smoothing steps, the appearance of the curve is not constant {

it often changes by a few pixels after each edit.
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Figure 2.14: The three vertical lines are struts. The dashed line indicates the original
position of the shadow. Dragging the center strut downwards moves the shadow along the
oor while �xing the appearance of the curve.

might not be the intended one.

2.3.4 Strut manipulation

We can consider the problem of correlating a curve with a shadow to be an instance of the

general problem of matching features in two signals. From this point of view, we wish to

extract the \salient" features of the image-space curve and shadow, register the two curves

to align these features, and �nally calculate the �nal 3D curve.

In our current system, we take into account only the critical points of the image-space

curve and shadow. That is, critical points are the only features we consider to be salient.

The system ignores other features, such as bends, because we assume that the user will draw

such features in correct alignment (�gure 2.20 shows what happens when this is assumption

is incorrect).

It might be useful to provide automatic registration of such features { one possible way

to do this would be to adapt the dynamic time warping algorithm from [8] to register the

curve with the shadow.

Though we do not currently support this more general notion of signal matching, we do

let the user explicitly align certain features. To facilitate this, we allow the user to draw

struts, which are lines parallel to the projection vector that connect a �xed point on the

shadow with a �xed point on the curve. After placing a strut, the user may drag its bottom

up or down. This has the e�ect of adjusting the shadow while leaving the appearance of the

curve unchanged, as shown in �gure 2.14. The shadow is a�ected just in the span between

the two neighboring struts.

2.4 Extending the system to stick �gures

The techniques was have described allows a user to sketch interesting 3D curves and edit

them in an intuitive way. In this section, we described how we have extended these ideas

to support sketching stick �gures.
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Figure 2.15: A simple stick �gure.

Stick �gures seem easy to draw. A �ve-year-old child can draw stick �gure animals and

people. Yet despite their simplicity, stick �gures are an important step in creating more

complex drawings. Experienced artists often begin drawing human forms by sketching

their underlying structures as stick �gures . Stick �gures nicely convey shape information,

proportions, and relative position of di�erent parts of an object. They also easily express

connectedness, i.e., it is easy to see in �gure 2.15 that the arm is connected to the torso at

the shoulder joint.

Stick �gures have a natural extension from 2D to 3D. Instead of a drawing made up of

connected 2D strokes, we want a model made up of connected 3D curves. Our goal then

becomes designing an interface that would enable a user to sketch 3D stick �gures with the

same ease with which she would sketch 2D stroke with pencil and paper.

We formally de�ne a stick �gure as a graph G = (V;E) where each vertex v 2 V

corresponds to a point pv 2 <3, and each edge e = (u; v) 2 E corresponds to a continuous

curve Ce of �nite length where the two endpoints of Ce are pu and pv. Note that this graph

may contain more than one connected component, and more that one edge between two

edges. Informally, we blur the distinction between a vertex v and a point pv, and refer to

both as a point. Similarly, we refer to and edge e and a curve Ce as a curve. Thus,we can

think of a stick �gure as a network of connected points and curves.

Figure 2.16 shows a stick �gure created by our system.

2.5 Basic operations

The interface for our system is similar in style to the Sketch system [47]. The user is

presented with a perspective view of the scene, which initially consists of only a oor plane.

We use a three button mouse with the right button for camera controls, the middle button

for manipulation, and the left button for drawing operations. For camera controls, we use
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Figure 2.16: A simple 3D stick �gure created in our system.

the technique described in [45] because it maps a full set of World-In-Hand camera controls

to a single button.

Drawing operations are invoked by depressing the left button, dragging the cursor, and

releasing. The sequence of mouse positions de�nes a drawing stroke, which is a 2D polyline

on the screen. We interpret a stroke as either a curve or a point. A stroke that �ts entirely

inside a bounding box with width and height less than 10 pixels is considered to de�ne a

point; all other strokes are considered to de�ne curves.

When we recognize an input stroke as a point, we cast a ray from the eye-point through

Figure 2.17: Drawing a point on the existing curve splits the curve and adds a new point.
After the operation, there are two separate curves. The user can then drag the center point
to manipulate both curves.
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the center of the input stroke. We intersect this ray with the scene to determine the location

of the 3D point. For ease of picking, we treat curves as tubes with some small radius and

points as spheres with a small radius (10 pixels). If the ray intersects an existing curve, we

split the curve into two sections, and join the sections with the new point (see �gure 2.17).

When we recognize an input stroke as a curve, we apply the system of heuristics described

in section 2.3.1. At either end of a curve, we create a point if one does not already exist at

that location.6

Curves may be manipulated in several ways. With the middle mouse button depressed,

the user may click on a curve C and drag it. All curves and points in the same connected

component as C are translated parallel to the �lm plane to maintain pick correspondence.

Every curve has a corresponding shadow curve projected onto the oor plane. We treat the

shadow curves as interactive shadow widgets [17], where the user can drag a shadow widget

with the middle mouse button depressed, and the connected component of the corresponding

curve will be translated parallel to the �lm plane. The user can also edit a curve using the

interaction techniques described previously in this chapter, such as overdrawing, shadow

editing, and strut manipulation.

Manipulating points is accomplished by clicking on a point with the middle mouse

button and dragging it. If a point is clicked on, it is translated parallel to the �lm plane

to maintain pick correspondence with the cursor, and all connected curves are adjusted so

that they are geometrically connected to the point's new position. This is accomplished as

follows. If a curve C has endpoints p and q, and q is moved to q0, we �nd an aÆne map

that maps q to q0 and leaves p �xed. (We use the map that is composed of the rotation of

(q � p) to (q0 � p) about the axis (q � p)� (q0 � p) followed by a uniform scale about p by

the amount jq0�pj
jq�pj .) We then apply this map to C.

2.6 Discussion

Color Plates 2.18 - 2.20 curves created with the curve drawing techniques given in this

chapter.

This system is well suited for applications that require fast speci�cation of approximate

3D curves. Applications that require more precise curves might still bene�t from this

technique, because of the lack of overhead required and the simplicity of the interface. In

one scenario, the user would quickly sketch an approximate curve, then re�ne its shape with

6A heuristic may cause a curve to be projected into the scene such that its endpoint coincides with an

existing point.
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more conventional techniques.

We mentioned previously that our technique can be extended to allow shadows on walls

or nonplanar surfaces. There is also no reason to restrict the user to drawing the curve and

shadow from the same point of view. The user might draw the shadow from an overhead

camera position (thus specifying the shadow more accurately), then sketch the curve from

an oblique viewpoint.

A limitation of this method is that it can be quite hard to judge what the shadow should

look like for complex 3D curves, especially from an oblique viewpoint. We have observed

that users in our lab, even those with artistic training, have considerable diÆculty drawing

corkscrews and other spiraling shapes. In such cases, a better solution might be to use a

3D input device such as a Phantom or a 3D tracker.

2.7 Future Work

We use context-sensitive commands to indicate over-sketching operations and keyboard

modi�ers to indicate modes and to di�erentiate between di�erent editing operations. Al-

though this works, it is neither consistent nor supported by user studies. We would like

to �nd a more streamlined user interface, perhaps using marking menus or gestural com-

mands [34]. We would also like to have more users try this system, especially users with

artistic training but little experience with computer graphics tools.

A continuing project is to use this curve-sketching technique and stick �gure drawing

program within a sketch-based free-form modeling system. We believe this interface is a

good starting point from which to build a modeling system that leverages a user's talent

with pencil and paper to create more complicated shapes than was possible with the original

Sketch system [47].

If this system were a stand-alone application to let an artist quickly sketch stick �gures,

we would want it to capture the artist's \style." An artist may put subtle features in a curve

to express certain ideas. When viewing a stick �gure built out of planar curves from certain

viewpoints, however, the stylistic variations are lost. From the original viewpoint, a curve

contains all the details that were drawn. As the camera's position approaches the plane the

curve lies in, the curve appears attens out eventually becomes a straight line, losing all

detail information. Further, nonplanar curves drawn in our system must be smoothed to

reduce noise, but stylistic variations often consist of high frequencies. Smoothing a curve

therefore has the e�ect of reducing the level of expressiveness of the system. The system

described in the next chapter, Harold, seeks to overcome these limitations by storing strokes
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(a) (b)

Figure 2.18: The rope in the tetherball scene was drawn from the viewpoint in (a). Figure
(b) shows the same scene from a di�erent viewpoint.

not as 3D curve, but as \billboards" that look the same from all directions. Thus a stroke

maintains its stylistic appearance as the viewpoint changes.
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(a) (b)

Figure 2.19: The user has sketched a camera path through this virtual environment. The
curve was created from the viewpoint in (a). Figure (b) shows the scene from a di�erent
viewpoint.

(a) (b)

Figure 2.20: In �gure (a) we have intentionally misaligned the bends in the shadow and the
curve. Note in �gure (b) how the shape of the 3D curve has two bends while the sketched
curve and shadow each have one.



Chapter 3

Harold: sketching 3D environments

3.1 Introduction

In the children's book Harold and the Purple Crayon [25], a small boy, Harold, creates

a world by drawing it with his purple crayon. He explores and expands this world by

walking into and through it, drawing all the time. In essence, this is the ultimate virtual

environment, allowing users both to experience and to create a virtual world around them.

An ideal VR system would be capable of this much expressiveness and interactivity, but

this problem is, at present, intractable. We therefore state a more restricted form of this

problem: Given a scene drawn in 2D from a single point of view, we would like to reconstruct

the scene interactively from novel viewpoints. In other words, we would like to be able to

draw a scene, move around it, and have everything just \look right."

Previous research has approached this problem in two primary ways, which we categorize

as geometric and image-based. In the geometric approach, the system attempts to create

a geometric description of the 3D scene from the user's 2D input. This is similar to many

problems in computer vision, and is essentially the inverse of traditional computer graphics {

given a rendering (or often a drawing), the system tries to recreate a geometric description of

the scene. New renderings can then be obtained from arbitrary viewpoints. The Sketch [47]

and Teddy [24] systems have demonstrated the feasibility of this approach for interactively

creating 3D objects from 2D gestures.

A limitation of Sketch and Teddy, however, is that the inferred geometry is often incor-

rect, and these errors become more and more apparent as the viewpoint changes signi�cantly

from that from which the object was initially created. This reects a fundamental drawback

of purely geometric approaches { not all 2D drawings can actually be generated from 3D

20
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models. Rademacher [33] discusses how this problem arises when animators attempt to

create static 3D models of cartoon characters, and proposes using dynamic view-dependent

geometry to address it.

Image-based approaches avoid creating a geometric description of the scene, but instead

redisplay the original input image, modi�ed to reect new camera parameters. The system

described in [42] lets the user draw on the inside of a sphere, thus allowing an immersive

experience as long as the camera's position remains �xed. In Tour Into the Picture [19],

the user begins with a 2D image, which may be either a photograph or hand-drawn, and

then speci�es geometric constraints such as the vanishing point and horizon line. The user

can then view the scene from novel camera locations within certain constraints (the user

cannot, for example, turn around and look behind herself).

Our approach attempts to �nd a middle ground. Our system, Harold, like Sketch

and Teddy, creates a 3D model of the environment. However, our world is populated by

drawings, not 3D objects, and thus is similar to image-based methods, particularly [42].

The primary geometric primitive in our system is a billboard ; these are commonly used

in interactive systems to render complex yet unimportant objects with low overhead. A

billboard is typically a plane with an image texture-mapped onto it that rotates about some

point or axis to face the viewer as much as possible. Our billboards contain collections of

planar strokes rather than textures. When the user draws a stroke over a billboard, we

simply project the stroke onto the billboard and store it; then, to display the billboard, we

re-render each stroke, rotated appropriately (see Figure 4.1). Thus, we avoid the problem

of reconstructing what the backside of a tree looks like { the tree simply has no back. A

consequence of this choice is that Harold, unlike Sketch and Teddy, works with a very small

set of inferences about the user's strokes: for the most part, strokes are simply projected

onto a surface and nothing more.

As noted by Zeleznik et al. [47] and Igarashi et al. [24], it is important that views of

the scene be rendered in a non-photorealistic style, in order better to convey the imprecise

and hand-drawn nature of the underlying geometric description. We take this notion even

further and allow the user to draw objects using a variety of stroke styles. With the

exception of distance cueing, we render the strokes exactly as they were drawn. Objects in

Harold maintain the distinct stylistic appearance and subtleties imparted by the user, and

our worlds thus maintain their intended style and character as the viewpoint changes.

The primary drawback of our approach is that the relationships between objects change

as the viewpoint changes. For example, imagine a fenced-in area containing farm animals.

If the fences were all billboards, they would rotate through one another as the viewpoint



22

(a) (b)

Figure 3.1: Creating a billboard. (a) The trunk of the tree was drawn as a stroke starting
at the base. The leaves were then added to the billboard. (b) That same billboard, seen
from a di�erent view; the billboard on which the stroke was drawn rotates so as always to
face the viewer as much as possible.

(a) (b)

Figure 3.2: The hammock, which is a bridge anchored to the two tree billboards, was created
from the viewpoint in (a); (b) shows the objects from a new viewpoint.

changes, unwittingly freeing the enclosed livestock. We thus need some way of specifying

�xed relationships among objects in our world. For this purpose, we use a bridge billboard,

which is a collection of planar strokes that is anchored to points on two billboards (see Figure

4.2). Thus, we can string a fence between separate fence posts, or a hammock between two

trees. Harold also has a primitive terrain-sketching facility, with which the user can sketch

a height�eld terrain by drawing the silhouettes of hills or other features.

The entire Harold system is an amalgamation of simple components { there are no algo-

rithmic subtleties, nor any complex constraint-maintenance mechanisms. Our contribution

is thus an approach to 3D scene reconstruction that combines features of other approaches

as well as novel ideas, and integrates them with a particular set of interface choices to create

an interactive system.
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3.2 Related work

Our system has a similar aesthetic to several 2D paint programs. We like the easy-to-

use and appealing visual interface of Kid Pix [18], which is a paint program designed for

children. In Kid Pix, all operations are easy to �nd and have immediately observable

consequences. Because this type of interface places a low cognitive load on the user, it

encourages experimentation and exploration. Our system is similar to the AltaMira and

Quantel Paintbox systems ([39] and [32]), although these systems are not fully 3D, in that

they employ a similar notion of creating scenes by layering images on top of one another.

Interactively constructing 3D scenes from 2D input is an active research area. The

Sketch and Teddy systems ([47] and [24]), as well as the system described in the previous

chapters, allow the user to create 3D objects via simple suggestive gestures. In Teddy, for

example, the user draws the silhouette of an object, and the system creates a plausible 3D

shape with that silhouette. Previous work by Tolba et al. [42] is very similar in spirit and

technique to Harold. In their system, user's strokes are projected onto a sphere centered

at the camera. We have in fact incorporated this technique into Harold to let the user to

draw objects in the sky. Tour Into the Picture [19] allows the user to \enter" a 2D image

by warping the image to simulate new viewing parameters.

We use the stroke-based rendering system described in [30], which is related to the

skeletal strokes technique described in [21, 20]. The ground in Harold is rendered using the

shader described by Gooch et al. [15], which provides shape information while preserving a

brightly colored hand-drawn appearance.

3.3 The user's view of the system

We now describe how the system appears to the user. The initial view of the world shows

a \ground," which is a large planar region of the xz-plane, and a \sky," which is the inside

of an enormous sphere.

The interaction metaphor in Harold is drawing. With the exception of clicking on

toolbar icons to change color, stroke style, stroke width, and drawing mode, all operations

are invoked either by clicking on an object or by drawing a stroke. There are three buttons:

the drawing button, the camera button, and the eraser button.1 Figure 4.5 summarizes the

gestures, key-mappings, modes, and their meanings.

1Our implementation uses left button for drawing, right button for camera controls, and shift-left button

for erasing.
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(a) (b)

Figure 3.3: Ground strokes. (a) A ground stroke crossing the silhouette of the hill on the
left. (b) The same stroke seen from a di�erent view, showing how the system has �lled in
the \gap" with a segment.

The user places her cursor at some point of the screen; this point corresponds to a point

of the world, either on the ground or in the sky. (Henceforth, we merely say that she places

her cursor \on a point in the world," glossing over the correspondence induced by tracing

a ray from the viewpoint through the point on the �lm plane and into the world.) She now

begins to draw by dragging the cursor with the drawing button depressed. The style of the

resulting stroke depends on the current color, the current stroke width, and which of three

rendering styles is selected from the menu.

STROKES ON THE SKY. Suppose that her starting point was in the sky. The

strokes are then interpreted as \drawing on the sky" and the result is a stroke on the sky,

visible whenever she looks in that direction. As mentioned above, this is an implementation

of [42].

STROKES ON THE GROUND. Strokes that begin on the ground are interpreted

in one of three ways, depending on the drawing mode currently selected on the toolbar:

drawing on the ground, drawing billboards, and drawing terrain.

Drawing on the ground. In drawing-on-the-ground mode, a stroke that starts on

the ground is treated as laying down marks on the ground itself. This is useful for creating

things like train tracks, sidewalks, etc. If the user's stroke crosses over a silhouette of the

terrain, the projection of the stroke onto the ground terrain will be discontinuous. We make

the projected stroke continuous by bridging any gaps with curves that look from above like

straight line segments (see Figure 4.3). Since our terrain is a height�eld, for every x and z

coordinate, there is a unique y coordinate. We can thus �ll in all gaps with a line segment

on the xz-plane, and then compute the height at each point along the line segment to create

a 3D stroke that lies on the ground.

Drawing billboards. In billboard-drawing mode, a stroke that starts on the ground
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creates a new billboard, anchored at the starting point of the stroke. The billboard's plane

is perpendicular to the ground, and as perpendicular as possible to the eye-to-stroke-start-

point vector. Thus the billboard plane's normal vector, when the billboard is created, is

n = y � (y � (eye� base));

where eye is the camera location, base is the location of the base of the billboard and y is

the vertical unit vector in the world.

After each stroke is added to a billboard, a bounding rectangle for the strokes on that

billboard is created, slightly enlarged, and displayed in a semi-transparent light gray. Any

subsequent stroke that starts in this highlighted area is added to this billboard, regardless

of the current drawing mode. This is important in creating billboards having several strokes

that do not actually touch.

The interpretation of strokes has one small subtlety: the �nal meaning of a stroke is

determined at the end of the stroke, when the mouse is released. If the mouse-up occurs

outside of the highlighted area, and over a di�erent billboard, then the stroke is interpreted

as de�ning a bridge billboard between these two billboards, or simply a \bridge."

Drawing bridge billboards. A bridge is created, as just described, by a stroke

that starts on one billboard (we'll call the start point S) and ends on a stroke in another

billboard (we'll call the end pointE). Both S andE are taken to be points on their respective

billboards, not in the world; when the billboards turn to face the camera, the world locations

of S and E change as well. When a bridge is created, the system determines the plane that

contains the current world-space positions of E, S, and the y vector. At creation time, this

bridge billboard is highlighted, and subsequent strokes drawn on it are recorded just like

those on any other billboard.

When the camera is moved, the world-space locations of E and S may change. When

this happens, the bridge billboard is scaled in its horizontal direction and sheared along the

vertical direction to maintain the correspondence of points of the billboard with the points

E and S (see Section 3.4.3). This helps to maintain the apparent \connections" between

strokes in the bridge billboard and strokes in the billboards at either end.

Drawing terrain. In terrain-drawing mode, a stroke that starts and ends on the ground

creates a bump in an attempt to make the stroke a silhouette of the newly deformed ground

(see Figure 4.4). All objects in the world are then lifted so that they remain coincident

with the ground.

OTHER GESTURES. A few other gestures can be made with the drawing button.

A single click anywhere in the scene un-highlights the highlighted billboard. A single click
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(a) (b)

Figure 3.4: Editing terrain. (a) The user draws a stroke starting on the ground that
indicates the shape of a hill; (b) The hill is created by warping the ground to try to match
the stroke.

on a billboard stroke highlights the billboard that contains that stroke. Colors can be drag-

and-dropped from the color palette onto the sky, the ground, or any stroke, to change their

colors accordingly.

ERASER GESTURES. Clicking on a stroke with the eraser button removes it. Scrib-

bling on a billboard with the eraser button depressed removes the entire billboard.

CAMERA CONTROL.We wanted a driving-style interface for controlling the cam-

era location in Harold. We rejected World-In-Hand controls because we wanted to give the

user a sense of the size of the world around her. We wanted a technique that would blend

aesthetically with the stroke drawing nature of Harold. Igarashi's technique [22] was appro-

priate because of its path-drawing interface; however, we adapted this technique so that the

user could explicitly specify a point in the scene at which the camera would look, and we

set the camera always to be two units above the ground (so that one unit is approximately

equal to one meter).

To move the camera, the user draws a stroke on the ground with the camera button

depressed. This path is displayed as a red line, and the gaps in the stroke that the user

can't see are �lled in as described above. The user then clicks on a point on the world. The

camera moves along the drawn path at a constant speed (5 meters per second) and ends up

looking at the point where the user clicked. A click on the sky while the camera is traveling

along a path cancels the current path.

To swivel and tilt the camera, the user clicks on the sky with the camera button and

\drags" the sky side-to-side to swivel, or up and down to tilt. We constrain the camera

only to tilt 30 degrees up or down from the horizontal plane.

We also provide Doom-style camera controls [40] via the numeric keypad, so the user

can optionally y through the world. This particular choice of controls breaks the drawing
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metaphor, but is a simple way to give the user more freedom of movement in the virtual

world.

3.4 Implementation details

3.4.1 Storing collections of strokes

All strokes are stored with an associated color, style, and width. The width can be in either

pixels or world-space units. Strokes on billboard and bridges are stored in world-space

width, while strokes in the sky and on the ground are stored in pixel width. If the width

is in world-space units, we �rst compute the corresponding width in pixels that an object

would have at that distance from the camera and then render the stroke. Thus strokes

change their widths to indicate distance from the camera. We clamp all pixel widths so

strokes are at least three pixels wide.

Since our toolbar indicates stroke widths by circles of di�erent pixel radii, one issue

that arises when storing strokes with world-space width is what does it mean to select a

particular stroke width. We decided that selecting a stroke width in pixels should indicate

the width at which a particular stroke would be rendered if it were at the same distance

from the camera as the �lmplane. Thus, when the user has selected a particular stroke

width, strokes drawn with that width may have di�erent pixel widths depending on their

distances from the camera.

The collection of strokes associated with a billboard or a bridge is represented as a list of

polylines in the coordinate space of the billboard, which is a copy of <2. The coordinates are

then mapped into the world via the transformations described in the following two sections.

3.4.2 Billboard transformations

Whenever the camera moves, each billboard must transform itself to face the camera. While

a number of possible transformations would achieve this a�ect, we chose a relatively simple

transformation in which each billboard rotates around a single point �xed at the base of the

billboard. To minimize the artifacts that occur when rotating a billboard, we determine the

point of rotation by �nding where the billboard's strokes touch the ground. This rotation

point is updated every time a stroke is added to or removed from the billboard.

Since some billboards have more than one point where a stroke touches the ground and

others have none, our algorithm for choosing a rotation point searches the collection of

stroke polylines on the billboard for all points with a locally lowest y-value. We next �nd
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Figure 3.5: The interface components: red arcs are strokes, red dots are clicks.
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all such minima that are within a small distance of the ground (we use 0.5 meters), and of

these determine L and R as the leftmost and rightmost (i.e., the points with the highest

and lowest x-value in the coordinate space of the billboard). We choose the midpoint of L

and R for the center of rotation. When no strokes have points near the ground, we simply

choose as the center of rotation the lowest point over all strokes on the billboard.

Each billboard is represented internally as a copy of <2 together with a basepoint b in

<3; for any viewpoint v, we build a rigid transformation that maps the origin of <2 to b

and maps <2 to a plane through b that contains y and the vector (v � b) � y. If we use

coordinates [x; y; 1]t for points of <2 and coordinates [x; y; z; 1]t for points of <3, then our

transformation is represented by the 4� 3 matrix

M =

2
666664
 0 bx

0 1 by

� 0 bz

0 0 1

3
777775

where

 = (v � b)x=
p
(v � b)2x + (v � b)2z

� = �(v � b)z=
p
(v � b)2x + (v � b)2z;

which maps the origin to b, the unit y-vector in <2 to the unit y-vector in <3, and the unit

x-vector to the horizontal unit vector in <3 that is orthogonal to v � b.

3.4.3 Bridge transformations

A bridge is created with a pair of points S and E, each on a separate billboard. Let Ŝ and

Ê denote the world-space locations of those points at the time the billboard is created. Let

q denote the vector Ê� Ŝ and m = [qX ; 0; qz ; 0] denote its projection to the xz plane. Then

we build a map from <2 to <3 de�ned by the transformation

N =

2
666664
� 0 Ŝx

0 1 Ŝy

� 0 Ŝz

0 0 1

3
777775

where

� = qx=jjmjj and � = qz=jjmjj;
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which sends the origin 0 to Ŝ, the unit y-vector of <2 to the unit y-vector of <3, and the

unit x-vector in <2 to the unit vector in the direction m. The preimage of E under this

transformation is some point e of <2. Since the preimage of S is the origin and the preimage

of E is e, the preimage of q = S �E is e� 0; thus N(e� 0) = q.

To store a stroke made on a bridge billboard, we project each vertex onto the bridge's

plane to get a point in <3. This points is then transformed by N�1 and recorded in <2; when

the bridge is to be redisplayed from some other view in which the world-space locations of

E and S are now �E and �S, we build a new transformation �N that maps the origin to �S,

the y-axis of <2 to the y-axis of <3, and the point e to the point �E (or equivalently, maps

the vector e� 0 to the vector �q = �S � �E. Letting �m = [�qx; 0; �qz ; 0]
t be the projection of the

vector �q to the xz-plane, the matrix for this transformation is

�N =

2
666664

�� 0 �Sx

0 1 �Sy

�� 0 �Sz

0 0 1

3
777775 �
2
664

1 0 0
�qy

qyjj �mjj 1 0

0 0 1

3
775 �
2
664

jj �mjj
jjmjj 0 0

0 1 0

0 0 1

3
775

where

�� = qx=jjmjj and �� = qz=jjmjj:

Reading right to left, the �rst matrix scales the domain in x so that after being transformed,

the vertical line that contains e will map to the vertical line containing �E. The second matrix

is a shear such that the vertical line containing the origin is unchanged and the vertical line

containing e is raised so that e maps to �E. The third matrix is simply a rigid transformation

like the one built for N above.

3.4.4 Rendering strokes

As described above, each stroke is de�ned by a sequence of points (a polyline) and a pixel

width that is either stored or computed. This sequence of points is then rendered as a

stroke using the method of Northrup and Markosian [30]. The three stroke styles we have

implemented provide a fair range of expressiveness while maintaining interactive frame rates.

Examples of these stroke types are shown in Figure 4.6.

For the marker style, we use a stroke with constant width and no mitering at the

endpoints. For the ink style, we use a stroke with mitered endpoints and a width that

tapers to 0. Since the width is tapered over the length of the stroke, the stroke gets wider

near its beginning as its length increases. In our interactive system, this gives the e�ect of

ink \bleeding" and spreading outward as the user continues to draw a stroke.
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Figure 3.6: The top strokes are marker style, the middle strokes are ink style, and the
bottom strokes are watercolor style.
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For watercolor strokes, the stroke is drawn with increasing transparency along its length.

We linearly fade out the transparency to 0:5 along the �rst 20 vertices of the stroke, and

draw all subsequent vertices with 0:5 transparency. This implementation captures only a

tiny fraction of true watercolor behavior (as modeled by Curtis et al. [12]), but is eÆcient

enough for rendering in our real-time system.

Strokes are rendered by �rst building triangle strips, and then passing them to the

rendering pipeline using OpenGL [7]. Since strokes are view-dependent, we cannot just

cache them in display lists; they must be rebuilt for each frame. However, the user typically

maintains a �xed camera position while drawing an object. To get a higher sampling rate

for the input device in this case and improve the interactivity of the system, we we can take

advantage of display lists and cache the triangle strips that have already been built.

3.4.5 Terrain

Terrain-editing strokes must start and end on the ground. Call the starting and ending

points S and E. Just as in the bridge-de�nition rules in sections 3.4.3, these two points,

together with the y-vector, determine a plane in <3, that we call the projection plane. The

points of the terrain-editing stroke are projected onto this plane (this projection, which is

a curve in <3, is called the silhouette curve); the shadow of the resulting curve (as cast by

a sun directly overhead) is a path on the ground (we call this the shadow). Points near the

shadow have their elevation altered by a rule: each point P near the shadow computes its

new height (y-value) as a convex combination

(1�w(d)) � Py + w(d) � h

where d is the distance from P to the projection plane, h is the y-value of the silhouette

curve over the nearest point on the projection plane to P , and w(d) is a weighting function

given by

w(d) = max

 
0; 1�

�
d

5

�2
!
:

This gives a parabolic cross-section of width 10 for a curve drawn over level terrain. Other

choices for w would yield hills with di�erent shapes that might be more intuitive, but this

particular choice gives reasonable results in most cases.

Note that if the silhouette curve bends back on itself (i.e. it de�nes a silhouette that

cannot be modeled using a height�eld), then the variation of height along the shadow will

be discontinuous. The resulting terrain then may have unexpected features.
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3.5 Limitations and discussion

Figures 4.7 and 4.8 show two scenes created using Harold. Both scenes took under 15 min-

utes to draw. Figures 4.9 and 4.10 show how Harold can be used for conceptual prototyping

of outdoor scenes. Figure 4.11 shows a simple moon scene.

The major problem that arises in trying to reconstruct a 3D scene from 2D input is

trying to determine what an object looks like from a new point of view. One can think of

billboards as providing a crude solution to this problem { we approximate the appearance

of an object from a new viewpoint as its appearance from the initial viewpoint. Thus

billboards work well for objects that look approximately the same from all directions, e.g.,

trees, owers, telephone poles, and even roughly drawn characters. When this assumption

of approximate radial symmetry does not hold, as in the case of a house, say, billboards

look odd and visually disturbing.

A di�erent approach may have more success in cases like this. The advantage of a

system like Teddy, for example, is that for certain types of objects, Teddy can produce

fairly accurate approximations of the objects' appearances from novel viewpoints. Another

strategy is to constrain the camera so that the user views objects only from viewpoints from

which the system can plausibly reconstruct an object's appearance. This is the approach

taken in Tolba, Dorsey, and McMillan's system [42], and one we have incorporated to

a certain extent in Harold. This is why in Harold the camera is constrained to stay at a

constant height over the ground (with the exception of the optional ying controls); we have

made the system's task slightly easier since we don't have to reconstruct the appearances

of objects from above or below.

Another drawback of billboards is that they do not maintain a �xed relationship with one

another as the camera moves. For example, when two large billboards are close together,

they may intersect each other as the viewer moves and the billboards rotate. This can

produce surprising visual e�ects. Our algorithm for choosing the center of rotation partially

addresses this problem, as does the use of bridges, but there are some cases that neither

approach handles particularly well.

Also, the interface in Harold is more obviously modal than systems like Sketch or Teddy.

It is not clear whether this is a drawback or not. The notion that modes are \suggestive"

rather than rigid may be somewhat awkward to some users as well: one can be in billboard

mode and still perform operations that are not related to billboards, such as drawing on

the sky.
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3.6 Future work

An obvious direction for future work is to incorporate more techniques from systems such

as Sketch, Teddy, or our 3D stick �gure system. It is not clear how to do this in many

cases, and it is clearly a nontrivial task. However, such a system could potentially be a very

powerful modeling tool for creating visually rich 3D environments.

Although we have three types of brushes, it is clear that a richer mechanism for creating

drawings would be useful. All of the features of ordinary paint programs could conceivably

be incorporated, although certain issues arise in the context of our system that do not arise

in 2D paint programs. For example, ood-�lling a collection of strokes on a billboard is

not as simple as ood-�lling a region of a 2D image because there may be gaps between

strokes that are not visible if the billboard is suÆciently far away. A naive ood �ll would

then unexpectedly ow outside of the intended area. These are interesting problems to

investigate.

We have also experimented with view-dependent billboards. Instead of representing an

object with a single billboard, we represent a object with multiple billboards with the same

axis of rotation, where only one of these billboards is visible at a time. Associated with

the ith billboard is a vector bi describing the \optimal" direction for viewing that billboard.

From a camera position v, we �nd a vector from the billboard's axis of rotation to v. Call

this vector b. We then choose billboard i according to

argmax
i

(bi � b):

In other words, we display the billboard best suited for facing the current camera position.

Once the billboard is selected, it is rotated about its axis to best face the camera as with

regular billboards.

While this approach allows the user to create objects that don't look the same from all

directions (e.g., the back of someone's head could have hair, while the front could have a

face), it is not clear how to integrate view-dependent billboards into the current interface.

For example, how does the user specify the \optimal" direction for viewing a billboard?

The user might want some features to appear from certain views, and not from others, or

from all views all the time. These complexities quickly bog down the simplicity of Harold's

drawing interface.

Other directions we are exploring include extending the drawing metaphor to allow the

user to \draw" animations, such as a river that appears to be owing or rain that appears

to be falling. It is conceivable that somehow we could take this even further and allow the
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Figure 3.7: This scene was created in Harold. The mountains are painted on the sky, the
fences are bridges strung between billboards, and the hut in the lower center is a billboard.

user to \draw" simple behaviors, thereby creating interactive 3D environments.

Finally, there are many possible extensions to the rendering system, such as adding

automatic level-of-detail for strokes that are far away, improvements to the overall eÆciency

of the system, and incorporating other non-photorealistic rendering styles such as those

described in [27].
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Figure 3.8: This scene was created by an art student after using Harold for approximately
1 hour.

Figure 3.9: Here Harold was used to create an initial conceptual sketch of an outdoor scene.
The scene was created by an architectural student within an hour of �rst using Harold.
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Figure 3.10: The same scene from a di�erent viewpoint.

Figure 3.11: A moon scene created in Harold. The bright colors and di�erent stroke styles
enable Harold to capture the liveliness of a child's drawing.



Chapter 4

Sketch-based interfaces

In general, the goals of a user interface include precision, speed, ease of learning, exibility,

expressiveness, and naturalness. While these are all important factors, we observe that

certain tradeo�s are necessary. In the interfaces described in this thesis, we have traded

exibility and precision for naturalness, ease of learning, and speed. In this section, we

would like to examine these tradeo�s in an attempt to explain why they are necessary, and

to understand the dynamics of user-interface design choices. While this discussion may

apply to interfaces for specifying 2D information as well, we will focus on sketching to

specify 3D information.

We begin by de�ning what we mean by a sketch-based 3D interface. A sketch-based in-

terface allows a user to specify 3D objects, scenes, or other information by directly specifying

appearance and shape information via an input device. The goal of a sketch-based interface

typically is not the creation of a detailed geometric model; rather it is often communication

and rapid exploration of design possibilities.

4.1 Interface components

Figure 4.1 is a diagram showing the di�erent elements of a sketch-based interface system.

The top layer is the Device Layer. This consists of the actual input device or devices that

the user interacts with. The second layer, the Feedback Layer, consists of how the system

provides immediate feedback to the user's input, in the form of a cursor, haptic feedback, or

other techniques. The Gesture Set Layer determines of how the data stream is segmented

into di�erent commands. This determines what the user must learn in order to use the

system. The Inferencing Layer consists of how the system interprets input gestures to

extract the parameters the system needs to execute a command. The bottom layer, the

38
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DEVICE

FEEDBACK

GESTURE SET

MODEL

INFERENCING

Figure 4.1: The components of a sketch-based interface.

Model Layer, consists of the kinds of models the system can create and manipulate, where

a \model" may include geometric, appearance-based, or dynamic descriptions of an object

or an action.

For a particular modeling system, we can identify the space containing all models that

the system is capable of producing. Our analysis of a sketch-based interface must take

the structure of this space into account. Informally, we seek to describe the structure of

the model-space, speci�cally by describing how the space can be parameterized, and by

calculating its dimensionality.1 If we think of a particular model as a point in this model-

space, then the modeling task to specify a point in model-space. We can think of an

interface as a process that takes data obtained from input devices and determines values

for the parameters of the model-space. This is shown schematically in �gure 4.2.

Decisions made in designing one level of the interface a�ect the functioning of the other

layers. Thus to design or analyze an interface, we cannot just look at each component

separately; rather, we must take into account the overall performance of our interface from

a functional point of view, as well as from a human-centered point of view. From the

functional perspective, we view the interface as a function that maps from an input stream

to a model-space. From the human-centered perspective, we consider the user experience,

in which a user interacts with the interface to explore the model-space.

4.1.1 Input device layer

From the functional point of view, it is less ambiguous to map high-degree-of-freedom (DOF)

input to a low-dimensional model space than to map low-DOF input to a high-dimensional

1We use the term \dimension" here loosely, since model spaces often are not actually vector spaces.
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Figure 4.2: This schematic diagram shows the components of the interface process. Raw
data is segmented into gestures, while the system provides feedback to the user. The
inferencing layer then maps these gestures to parameters in the model space, specifying a
particular model.

model space. Mapping from high-to-low involves removing redundant information, while

mapping from low-to-high involves somehow extracting extra information.

Using high-DOF input devices therefore has the potential to reduce the complexity of

other parts of the system, because less inferencing may be required. High-DOF input can

be obtained from 6-DOF trackers or 3D positional devices, as well as by aggregating data

from several di�erent input devices. This is the idea behind multi-modal interfaces in which

the user interacts with the system simultaneously via several di�erent channels.

In choosing an input device, it is also important to consider human factors such as

accuracy, fatigue, how \natural" it feels, ease of learning, coordination, and suitability to

a particular task. The input device is the physical component that the user interacts with,

and from the user's point of view, is of primary importance. Thus, the system designer

must choose input devices that have high enough DOF, while at the same time enabling a

pleasant user experience.

One approach for choosing an input device is to pick a device with the same number

of DOF as the model space. Balakrishnan et al. [3] describe a system for using a exible

metal strip as an input device to create 3D NURBS curves. In their system, the user poses

the metal strip, and the curve takes on the strip's shape. Because there is a direct mapping

between input parameters and model-space parameters, the inferencing layer is very simple.

However, such as simple mapping fails to exploit any of the bene�ts of extrapolation { the

system adds nothing to the user's input.

This is also the motivation behind the 3-Draw system [35], for example, where the user

traces out paths with her hands to create free-form curves. Since a curve is de�ned by a



41

time-varying position in <3, the input is also a time-varying position in <3. Again, the

inferencing layer is very simple { it involves an aÆne map applied to the input stream.

3D input devices are far from perfect, however. They su�er from lack of haptic feedback,

fatigue, lack of precision, and the engineering diÆculties in obtaining accurate positional

data. Zhai's article [48] provides an overview of current 3D input device technology.

Multi-modal interfaces provide a richer data stream, but are rarely feasible for deploy-

ment on a large scale because few of the required input devices are commercially viable yet.

Possible multi-modal interfaces include combining speech input with a 3D cursor to allow

for a \put that there"-style interface, or combining 3D tracker with hand pose information.

In Schkolne's work [36], for example, the user wears a CyberGlove with a 3D tracker at-

tached to it. The user \draws" a surface by sweeping her hands through space. Operations

such as changing color or erasing are distinguished by hand position. Two �ngers extending

means draw, while one �nger extended means erase. LaViola [26] provides a comprehensive

overview of multi-modal interaction in virtual environments.

The prevalence of 2D input devices such as the mouse or the tablet, along with people's

natural abilities to draw in 2D with pencil and paper, makes them a natural choice for many

systems. There is a lot of work on \natural" drawing-style interfaces using 2D input devices,

including the previous chapters of this thesis. A technique for increasing the dimensionality

of the input while using 2D devices is to use two of them, thereby creating a multi-modal

interface. Zeleznik et al. [46] describe interaction techniques that use a stylus and a puck on

a large WACOM tablet to perform camera manipulation and geometric modeling operations.

4.1.2 Feedback layer

While feedback is important for the user experience, it is also important for the e�ective

functioning of the system. If we consider that the modeling task is not just to specify a

model in the model-space, but to specify the desired model, then accuracy is important,

and feedback a�ects accuracy.

Feedback is closely related to the nature of the input device. For example, a considera-

tion when choosing a 3D input device for an interface is whether it provides haptic feedback.

Without this, a user has diÆculty attaining speed and accuracy. Haptics are a relatively

new research area, and while few general principles have emerged yet, this may prove to be

a fruitful direction to pursue. Miller and Zeleznik [29] suggest principles that may be used

in the design of 3D haptic interfaces.

Co-location of the input device with the display also enhances the user experience
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while improving accuracy. As noted in [44], in many situations performance advantages

can be gained by providing immediate visual feedback co-located with the input device.

Schkolne [36] postulates a theory of what he calls perceptual thinking, which states that sen-

sory and proprioceptive perception are integral parts of the cognition required to perform

a task. This theory suggests that a smaller distance between an action and its perceived

consequences results in better performance.

Feedback is related to the gesture set and inferencing layers. Feedback can be used to

constrain the user to give only input that conforms to the gesture set. If the user provides

invalid input, the system can correct the input and provide feedback to indicate how the

input has been corrected. An interface also may provide feedback to the user regarding how

the inferencing layer will interpret the input, such as by previewing the resulting model.

One such type of feedback is to provide geometric constraint information. In the Sketch

system [47], for example, the gesture to create a cuboid involves drawing three lines on the

screen aligned with screen-space projections of orthogonal axes of a �xed coordinate system.

To aid the user in drawing these lines, the system \snaps" each input stroke to the closest

axis by projecting it onto that axis. This indicates how that stroke will be interpreted by

the inferencing layer. Further, the di�erent axes are drawn with di�erent colors to help the

user immediately know which axis the system thinks she is drawing.

4.1.3 Gesture set layer

The gesture set layer determines how the input stream is broken up into separate input

commands. The gesture set determines what the user must learn in order to interact with

the interface. Therefore design choices made in this layer are judged by the cognitive load

they place on a trained or novice user. For a trained user, a well-designed gesture set should

\disappear" so that the user barely notices it at all. Thus, from the user's point of view,

we want a gesture set that is idiomatic, intuitive, and consistent.

From the functional point of view, we want a gesture set that will make the inferenc-

ing layer's job easier. Thus the gesture set should be as unambiguous as possible, while

also providing data in a format that is understandable. There are several techniques for

disambiguating di�erent gestures. We group them according to their qualitative e�ects

on the user experience. The techniques roughly fall into modal, chordal, grammar-based,

contextual, and probabilistic categories.

Modality involves having the user enter a mode, and then interpreting the input stream

based on the current mode. Using a modal gesture set requires temporal reasoning on the
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part of the user. In a chordal gesture set, the occurrence of several input events simulta-

neously indicates di�erent input gestures. A chordal gesture set is only possible when the

input devices are capable of generating multiple simultaneous input events. A grammar-

based gesture set requires that the incoming data be segmented into tokens, which are then

parsed according to a grammar. Parsing a stream of tokens is similar to the modal tech-

nique, except that the modes in grammar-based interfaces tend to \disappear," and the

user thinks in terms of multiple sequences of commands at a time. In a contextual gesture

set, gestures are disambiguated depending on where they occur. Contextual gesture sets

are similar to a modal gesture sets, except that they requires spatial, rather than temporal,

planning. A probabilistic gesture set involves some type of machine learning algorithm to

\guess" the user's intention. The goal with probabilistic gesture sets is to enable to system

to respond to less structured input.

Consider modeling systems that apply 3D model reconstruction algorithms directly to

a scanned image of a real pencil sketch, as surveyed by Wang and Grinstein [43]. The user

draws with a pencil then indicates that the system should apply an inferencing algorithm

to produce a 3D model. The gesture set the user must learn is virtually nonexistent.

The Sketch system is similar to these systems in that the input device is a stylus and

the resulting models are 3D scenes, but its gesture set and inferencing engine are quite

di�erent. The design goal was to \remind" the user of pencil sketching as much as possible.

Therefore the gesture set was designed to mimic the feel of a pencil sketch. Sketch uses a

grammar-based approach to distinguish between gestures, but after suÆcient practice the

sequences of gestures merge together and feel like a single command. The bulk of the e�ort

in designing Sketch came from designing a gesture set that would facilitate this learning

process while being unambiguous.

4.1.4 Inferencing layer

The inferencing layer is closely related to the modeling layer. Inferencing involves taking

recognized gestures and converting them to models. If we think of the model-space as

somehow parameterized, then inferencing is the process of extracting values for model pa-

rameters from the input stream. A typical sketch-based interface must determine values for

a high number of parameters from a lower-DOF input stream. The problem then becomes

a problem of interpretation. How does the interface extract the desired information from

this data stream accurately, quickly, and robustly?

For sketch-based interfaces, inferencing algorithms often involve projection or constraint
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solving. Inferencing can be complex, as in the case of the algorithm in chapter 3, or Igarashi

et al.'s algorithm for generating a polyhedral model from a silhouette curve [24]. Because

it can be so complex, inferencing may be the least accurate and robust component of an

interface. Therefore, interfaces in which most of the work is done in the inferencing layer

tend to be less precise and more sensitive to bad input from the user.

Inferencing may also be context sensitive. That is, the inferencing layer may use infor-

mation from models that have already been created to help it interpret the input data. Thus

there can be feedback from models that have been created back to the inferencing layer.

For example, to interpret a terrain stroke in Harold, the system intersects rays through the

�rst and last points of the input stroke with the height�eld terrain. The results of these

intersections depend on how the terrain has previously been edited. Thus there is feedback

from the terrain model back to the terrain-stroke inferencing algorithm.

4.1.5 Model layer

As the number of di�erent parameter values to be extracted from a single data stream

increases, the modeling task becomes more diÆcult because either the user must provide

more information, the inferencing layer must do more work, or both. Conversely, if the

model-space has fewer DOF relative to the input stream, then a less ambiguous interpre-

tation of user input is possible, resulting in greater precision and shorter time required to

perform a modeling task. Thus there is a tradeo� between system's accuracy against the

complexity of the model-space. It is harder to specify a model precisely in a complex space

that in a simple space.

At the same time, since the reason for a sketch-based system is to enable the user to

explore the model-space, it is important that the model-space contains interesting enough

models that it is worth exploring. Therefore a goal in designing a sketch-based interface is

to reduce the number of parameters in the model space while retaining a model space that

contains interesting and expressive models. This is why it is easier to design a sketch-based

interface that is domain-speci�c than it is to design a generic sketch-based interface. From

within a given domain, the class of models tends to have a more coherent structure that

the interface can exploit.

Consider drawing strokes on a billboard in Harold. A stroke is determined by the

billboard it belongs to, its drawing style, and its path, which is a sequence of points lying

in the billboard's plane. Since our models { in this case strokes lying on billboards { have

a high degree of structure, the user can easily draw precisely what she intends. Also, the
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Figure 4.3: The skeleton is shown on the left. The torso model on the right was edited at
three levels of resolution.

inferencing step is relatively simple. A single click gesture speci�es which billboard is to be

drawn on, and toggle buttons on the side of the screen select the drawing style. Once these

parameters are determined, we can simply project the 2D input stroke onto the billboard

plane to generate a stroke path.

A generalized stick �gure drawing system is much harder to design since it is diÆcult

reduce a stick �gure model to a small number of parameters. If we limit the type of stick

�gure to be drawn, however, we can perform this reduction and more successfully map user

input to a small number of parameters. This is precisely what heuristics do, and why a

given set of heuristics is only successful for a small class of stick �gures.

A hierarchical approach seems to be a promising technique for expanding the class of

models that may be created with a sketch-based system. This approach works well for

specifying models in a space where the parameters are hierarchical { i.e., \less important"

parameters depend on \more important" parameters. By requiring the important parame-

ters to be speci�ed �rst, the system can quickly narrow down the possible locations of the

model within the model space. In some cases, the system can �ll in default values for the

dependent parameters and suggest an approximate model for the user. The user then spec-

i�es the dependent parameters to re�ne the model further. This process may be repeated

until all parameters are speci�ed.

In previous work, we introduced Skin [28], a free-form modeling technique. An example

of a model created with Skin is shown in �gure 4.3. Skin allows a user to organically \grow"

a subdivision surface over an underlying skeleton. To create a surface using Skin, the user

�rst speci�es underlying skeletal shapes, which are created using the Sketch system. Skin

is then grown over these skeletons by specifying topological information, distance from the
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skeleton, and other properties. The user can then subdivide the skin mesh and add more

skeletal meshes at higher levels of resolution. With Skin, users can quickly specify complex

models with structure at multiple di�erent scales.

We can informally identify the parameters needed to specify a Skin model. Roughly,

they are a Sketch-generated skeletal model and information about how Skin should grow

over the skeletons. The information that determines skin growth, while complex, depends

partially on the makeup of the underlying skeleton. Thus there is a natural hierarchy

between the parameters that makes it easier to specify skin growth.

Furthermore, Skin uses a multi-resolution approach. At each level of resolution, the

parameters that specify detail at that level depend on detail information from the previous

level. Again, there is a naturally hierarchical relationship between parameters at di�erent

levels of resolution. By exploiting this structure, the Skin interface allows users to create a

huge variety of models that have otherwise eluded creation via a sketch-based interface.

4.2 Case study: sketching a motion path

We can use this analysis to guide the design of a sketch-based interface. Our general

approach will be to consider the desired model-space, the desired user experience, and then

to design each layer to attain both goals.

A full design methodology for sketch-based interfaces is beyond the scope of this thesis,

but we can provide a general outline for such a methodology. First, identify the space of

models to be created. Second, decide on a parameterization for this space that minimizes

the number of degrees of freedom and exploits hierarchical relationships if possible. Third,

decide on the input devices, user feedback, and gesture set that best suit the desired user

experience while maximizing the quality of the input data. Fourth, decide how to map

input to each of the model-space parameters in an intuitive and direct way. This will reveal

weaknesses with the original parameterization, or may point to additional parameters that

need to be speci�ed. This is an iterative process, requiring multiple repetitions. Ideally,

user feedback should be incorporated into the evaluation of each of these steps.

As an example, consider the following problem: create a sketch-based interface to specify

a motion path for a cartoon frog hopping over the ground. By motion path, we mean a 3D

curve. Therefore, one approach would be to consider the motion path as a generic 3D curve,

and use the 3D curve system described in chapter 3 to specify it. However, by recognizing

that these motion paths have more structure than generic curves, we can do better.

A motion path consists of several \jumps," each of which is an arc that lies in a vertical
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Figure 4.4: The frog motion path system. The motion path has been extended on the right
by adding three more jumps.

plane. Two jumps are joined by a \landing" where the frog touches the ground and changes

direction abruptly. So our space of possible motion paths is the space of continuous curves

made up of arcs lying in vertical planes. Further, the curve must touch the ground where

two arcs meet, and at the curve's endpoints. We can further assume that the curve should

remain above the ground at all other times. We have now reduced the number of parameters

needed to specify a frog path: A vertical plane can be speci�ed by two non-vertically aligned

points that it contains, and an arc can be speci�ed by the plane that contains it and a 2D

curve lying in that plane.

Now that we have proposed a model-space, we need to decide our intended user experi-

ence. The application is to be run on a desktop computer, so the obvious choice for input

device is the mouse. We would like the user to just \draw" a motion path from a particular

point of view directly into the scene by pressing a button and drawing with the mouse. It

is reasonable for the user to draw a motion path one jump segment at a time because this

matches a user's cognitive notion of a motion path containing several jumps, so our gesture

set will be a sequence of mouse strokes with the drawing button depressed. We could also

add a separate scribble gesture for erasing jump segments.

The inferencing layer will map from these mouse strokes to motion paths. Given a

stroke on the screen, the system casts rays through the �rst and last point of the stroke and

intersects these rays with the scene to obtain two points in <3. These two points de�ne a

vertical plane onto which the stroke is then projected. If any part of the projected stroke

lies below the ground, we abort and indicate that the jump was invalid. At the landings

on either side of a jump, we display a small red sphere. If a jump begins or ends inside
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the sphere of another jump's landing, we join the two jumps together. This interface lets

the user quickly build up a motion path from multiple jumps by exploiting the structure

inherent in the space of desired motion paths. Figure 4.4 shows our system in action.

Although we have not tested the system to any real extent, it is intuitive and easy to learn,

while generally producing the desired results.

Our design decisions in each layer a�ect the functioning of the other layers. For example,

if we change our model-space to require that jumps be parabolic arcs, our model-space would

have fewer DOF, since a parabola is de�ned by three points. As a result, our inference layer

would have to be redesigned. We could consider changing our interface further to require

only three mouse clicks, or maybe two mouse clicks for the end point followed by dragging

the peak of the parabola up and down, or some other technique.

While this small example may be simple, it illustrates the bene�ts of thinking about

sketch-based user interface design in this way. By analyzing our model-space, we were able

to determine what structure we could impose on it, and then exploit this structure to create

an e�ective 3D sketch-based interface.



Chapter 5

Conclusion

In this thesis, we have de�ned 3D sketch-based interfaces, examined the particular prob-

lems that arise when trying to develop them, and presented several algorithms, interaction

techniques, and systems to support 3D sketching. Our goal was to demonstrate that al-

though sketch-based interfaces present certain diÆculties, they also are a feasible and often

desirable approach to problems that arise in computer graphics.

In chapter 2, we considered the problem of drawing 3D curves and stick �gures in a way

that exploits people's natural abilities to draw with pencil and paper. We presented new

interaction techniques for de�ning and editing curves, as well as the underlying algorithms

to support these interactions. We also showed how to extend these techniques to build a

system for sketching 3D stick �gures.

In chapter 3, we described Harold, a system for quickly sketching 3D scenes with a hand

drawn appearance. Harold is successful because for certain types of scenes, billboards are

a surprisingly e�ective object representation. Billboards also have numerous advantages

that make them ideal for this type of application, such as that they maintain their intended

appearance as the viewing conditions change.

Finally, in chapter 4, we presented a framework for analyzing and designing 3D sketch-

based interfaces. Our analysis identi�es the di�erent components of a sketch-based interface,

and focuses on how design choices at each component a�ect the overall functioning of the

system and the user's experience. We demonstrated how this analysis could be used to

design a simple interface for sketching motion paths.
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