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Abstract ing 3D curves [6], describe techniques that could be applied to de-
fine the “underlying masses”), and because it is natural — that is, it

We present a new particle-based surface representation with whichresembles techniques commonly used by artists and recommended

a user can interactively sculpt free-form surfaces. The particles in books on artinstruction [1, 5, 7, 8, 16, 18, 22].

maintain mesh connectivity and operate under rules that lead them

to form triangulations with properties that make them suitable for

use in subdivision. A user interactively guides the particles, which

This paper describes our solution to a sub-problem that arises in im-
plementing our approach: given a collection of “masses$kaie-

: - . ~ tong represented as polygon meshes, each with an associated offset
we call skin to grow over a given collection of polyhedral ele (typically small), construct a smooth surface that approximates the

ments (orskeletony yielding a smooth surface (through subdivi- : - )
sion) that approximates the underlying skeletal shapes. Skin resem_dlstance surface defined by the skeletons and their offsets. Distance

bles blobby modeling in the constructive approach to modeling it Eurfacm;s, dlscussedth t[3] and tdéaflr!eddln_riectltohn f3 beilow,f typlcr;]llly Id
. ave sharp creases that are not desired. Thus the final surface shou
. sufsmooihly Spproxmae he distance suface,not .t exacly. The
anism for adding multiresolution sdrface detalil olution should work in an interactivetiag, continually updating
) the surface as skeletons are added, manipulated, or removed.
CR Categories and Subject Descriptorst.3.5 [Computer Graph-
ics]: Computational Geometry and Object Modeling 1.3.6 [Com-

puter Graphics]: Methodology and Techniques

Our solution, theskinalgorithm, works by constructing a subdivi-
sion surface control mesh that roughly fits the shape of the distance
surface. The control mesh in turn defines a smooth surface with a
Additional Key Words: Free-form modeling, meshes, subdivision, similar shape. A key contribution of this paper is to provide an algo-
multiresolution rithm for generating auitablecontrol mesh for use in subdivision.
Simply matching a given shape is not sufficient — the triangulation
of the control mesh has a strong influence on the qualities of the re-
sulting surice. Smaller triangles provide less “smoothing” effect,

. i o . . yielding a surface that more closely fits the control mesh, and —
The algorithm described in this paper derives from our ongoing ef- more importantly — irregular triangulations can greatly reduce the
fort to build a free-form modeling system with a direct interface — fajmess of the limit surface. This can be seen in figure 1.

that is, one in which the user defines shapes by sketching them di-

rectly as they would appear from a given viewpoint. In particular, The skin algorithm is good forapid construction ofapproximate

we seek to extend the principles developed in the SKETCH sys- free-form shapes. It is not suitable for applications that require ex-
tem [26] — rapid construction of approximate shapes via direct in- act control of the final shape. Skin supports fast, intuitiveiregl
teraction — to the problem of free-form modeling. The Teddy system of features at multiple resolutions andbpuces piecewise smooth
presented in these proceedings [11] targets similar goals, though wesurfaces with creases or sharp corners where desired. Since the al-
seek to provide more fine-grained control over the resulting shape,gorithm manipulates a polygon mesh, rendering can be done effi-
including the ability to add surface detail at multiple scales. Anim- ciently on common graphics hardware.

portant goal is that the interface should allow a user with skill at
drawing on paper to apply this skill to model compelling 3D forms.

1 Introduction

Together with these advantages, the skin algorithm has some draw-
backs: it is based on an iterative algorithm that is not guaranteed
With that in mind, we seek to build a system in which the user to convergeto a fixed triangulation — and sometimes doesn't. The
models complex surfaces by first constructing simplified represen- exact results depend not just on the primitives used to define the
tations of the underlying masses that give them their form, then surface, but also on the order of the user's operations. Finally, the
“oversketches” these masses with a smooth surface that approxi-behavior of the skin depends on the size of its triangles (which the
mates their collective shape. We chose this approach because of it§/Ser can control). It would be preferable not to expose the user to
tractability (SKETCH and Teddy, as well as our system for sketch- the issue of triangle size as a means of controlling surface shape.
The other difficulties can be alleviated by providing tools to let the
*{lem,jmc,tc,jft @cs.brown.edu user control the skin's behavior, as we will illustrateedduse we
designed skin for use in an interactive setting, we do not consider
any of these problems to be severe.

2 Related work

The skin algorithm resembles the methods for iteratively evolving
a triangulation described in [9, 10, 20, 23, 24]. It has much in com-
mon with Miller et al’s “volumetrically deformed models” [14] in
which a balloon-like surface is inflated under constraints to match a
volumetrically defined implicit function. Also, because the skin al-
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Figure 1 Triangulation matters. Two triangulations of the same shape ((a) and (c)) produce different results when subdivided ((b) and (d)).
The skin algorithm produces even triangulations, avoiding skinny triangles like those in (a) that lead to unexpected wiggles and bumps when
subdivided.

gorithm treats vertices as particles that interact with their neighbors “distance” is taken to be negative. Now fetx) = ds(x) — rs. The
while being guided by an implicit function, it resembles the particle distance surfaceefined by a single skeleton and its offset is just
system methods described in [21, 25]. (An important difference is the implicit surface defined bf¢(x) = 0. The distance surface de-
that skin particles have explicit connectivity information.) Skin is fined by the collection of skeletons and their offsets is the implicit
related to the large body of work on implicit surfaces, particularly surface defined b¥(x) = 0, whereF is the continuous function
offset and convolution surfaces [3, 17] and blobby modeling [2, 4], given by:
in the constructive approach to modeling it provides.
. . . - F(x) = min{fs(x) : s€ S}.
For mgltlresolutlon editing, we use Looplxdivision meshes [13],_
including the rules for defining creases and corners described The rules for positioning particles described in section 4.1 are de-
in [9, 19]. Previous work on subdivision surfaces has primarily fo- signed so that the skin approximates this surface. They also allow
cused on specifying subdivision rules and analyzing properties of ys'to evaluate the implicit function efficiently.
the limit surfacegiven a control mestHoppeet al. [9] present a
means to construct a good-dit\acontrol mesh for a gbdivision . .
surface that approximates a given polygon mesh (typically scanned4  The skin algorithm
from a real model). We are not aware of any work that discusses _ _ _ _
ways to construct suitable control meshes for subdivision surfacesAt a high level, the skin algorithm closely resembles algorithms
from scratch Recently Zorinet al. [27] and Pulli [15] presented ~ described in [10] and [24] for iteratively evolving a triangle mesh.
systems that let the user add detail to a subdivision surface (givenThe primary difference is in the implementation of step (1) of the
the control mesh). With these systems the user edits details of themain loop:
subdivision surface (at a given resolution) by manipulating individ- repeat
ual vertices directly. The skin algorithm, though originally designed - .
. . 4 . ; (1) reposition particles
to construct a good-qlity control mesh in the first ice, is readily (2) modify the skin’s connectivit
) . X A : y
extended to provide a mechanism for adding detail at finer scales h
- e . - . until no changes occur
more conveniently than by individual control point manipulations.
Intuitively, in step (1) particles move toward the implicit surface
while tending to distribute themselves more evenly and smoothing
out wrinkles and bumps in the skin. In step (2), the connectivity

. . ] f the skin is modified to produce triangles that are more nearly
Our meshes are triangle meshes, represented in the usual way: eacghuilateral and whose size is roughly the target length specified by

consists of a collection of vertices, edges and faces with local con- harhy skeletons. We now describe steps (1) and (2) in detail.
nectivity information. That is, each vertex stores pointers to its ad-

jacent edges; each edge stores pointers to the two vertices that de- o .
fine it and to at most two adjacent faces; each face stores point-4-1 Repositioning particles
ers to the three edges and vertices that defin&keletonsrepre-
sented with this mesh data structure, may be non-self-intersecting
closed surfaces, surfaces with boundary, polylines or even isolated

points. With each skeleton is associated a positive real-valffed g 104 "I step (1) of the skin algorithm, each particle is visited in
set The skin algonth_m |tere}t|vely modifies thaskl_nmesh (a closed turn. The new position’, of particlep is computed as a weighted
surface} to roughly fit the distance surface deflned_by the skeletonsSum of its current posit?owp, the centroict, of its neighbors’ po-
and their _o_ffsets. Each skelgton als_o has an asso_aarw length sitions, and a target positidp chosen to bring the particle closer to
that specifies the desired size of triangles the skin should generate, . implicit surface:

when growing over that skeleton. We refer to vertices of the skin ’
mesh agarticles It is convenient to associate with each particle a
reference lengtlthat measures the scale of the skin mesh near that

particle. We take the reference length to be the average length ofThe weightsy, 3, andy are non-negative and sum to one. We al-
the particle’'s adjacent edges. ways takea = 0.3, and choos@ according to how smooth the

Let Sdenote the set of skeletons. For a given skelsterSwith as- skin'is neap. (Theny is taken to be 1- a — f.) We estimate the

sociated offsets, and a poink in space, letls(x) denote the signed smoothness o_f the skin neprby calculating the minimum, over

distance fromx to s. That is,ds(X) is the distance fronx to the each edge adjacent m of the dot product of the normals of the

nearest point o8, but if sis a closed surface andis inside it, the WO faces adjacent to that edge. This value (catf)ilies between
1 and—1. Whenm is close to 1, the skin is smooth ngarwhen

3 Terms and definitions

The rules for repositioning particles are designed to allow the skin
to grow adaptively to conform to the changing implicit surface
as skeletons are added, repositioned, removed, or their offsets are

Xp = aXp + BCp + tp.
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LocAL-SEARCH(f,X)
y « closest point tox on f
if y is on boundary of
foreachadjacent facé containingy
if closest pointtx onf; 7y
return LocAL-SEARCH(f;, X)

mis close to—1, the skin contains one or more sharp edges near
p. A large value for3 results in a greater smoothing effect, so we
choos&3 = (1 — a)Bscale WhereSscaeis the function ofm shown in
figure 2. This function, chosen heuristically, seems to produce good
results. It has the effect of letting the skin move briskly toward the
implicit surface where the skin is reasonably smooth. Where the
skin is bumpy or uneven, it slows or stops moving until it smooths
out again, then resumes its motion toward the implicit surface.

returny

Figure 3 The LoCcAL-SEARCH algorithm, starting from facé on

The target position a meshM, traverses faces &fl, always moving closer to point to

bet al“a' © t?}e's glr(]%setgnsc?stht%t reach a poiny on M that is locally closest ta.
0.8 expand when inside
06 the implicit surface,
stay fixed when
0.4 on it, and contract
0.2 when outside it

m We can determine
whether the particle

is inside, on, or
outside the implicit
surface according

to whetherF(xp) is
negative, zero, or
positive, respectively. Also, by definition, the magnitude of this
value specifies a lower bound on the distance from the particle to
the nearest point on the implicit surface. We thus set the target
position to be a displcement along the particle’s surface normal
i, by an amount determined by~ (xp):

-0.5 0 0.5 1

Figure 2 The coefficient3scqe chosen
as a function of the minimum dot product
m. This function is a quarter ellipse.

Figure 4 A particlep can use its neighbor’s track poiy to get out
of a local minimum.

determine whether it is closed.) For closed surfaces, we can deter-
mine when a particle is inside provided that the patrticle has actually
tracked the globally closest poigg on the skeleton. For then the
plane containing, that is perpendicular to the vector froyp to

Xp divides space into two parts. The skeleton locally nygdies all

in one part and the particle lies in the other. An examination of the
face normals aroung, determines whethgy is inside or outside

tp = Xp + diip. the surface.

Of course, the bCAL-SEARCH procedure may return a point on
the skeleton that is onlpcally closest tgp (see figure 4). To over-
come this, particles exploit a second kind of locality: they share in-
formation with their immediate neighbors. Thus, to evaligte),

p runs the loCcAL-SEARCH procedure starting from its own track
Becaused is always nonzero, skin particles tend not to arrive ex- Point, and then again starting from the track points of each of its
actly at the implicit surface. (Where it is concave they lie outside neighbors in turn. The particle selects the result yielding the small-
it, and where it is convex they lie inside it.) As mentioned earlier, estdistance, and stores this as its new track point.

we prefer this behavior, since the distance surface defined by the
skeletons typically has unwanted sharp creases. For this reason, w
can think of the implicit function as guiding rather than defining the
skin’s final shape.

We can takel = —F(xp) unless this value is large (that is, the par-
ticle is far from the implicit surface). To prevent the particle from
taking excessively large steps, we restrict the magnitudktofbe
no more than the reference length of the particle.

When there are multiple skeletorscan switch to a track point

®n a different skeleton if doing so yields a smaNedue for the
implicit function. It can switch to a different track point on the same
skeleton, though, only if doing so yields a smaltéstance The
distinction between these cases occurs only when the skeleton is a
closed surface. In this case, the particle should first find the closest
point on the skeleton, then evaluate the implicit function from the

The skin algorithm is intended to work with skeletons that may signed distance to this point. Figure 5 shows examples of these two
be finely tessellated (as when representing muscle masses, such g8;geg.

those in figure 15). For the algorithm to be usable in an interactive
setting, it is important to evaluate the implicit function efficiently.
The particles do this by exploiting locality in two ways. To explain
this, let’s firstassume there is only a single skelesoBach particle

p tracks a poiny, onsthat is locally closest tp.* We refer toy, as

p’s track point® After updating its posion x,, p updates its track
point using the locAL-SEARCH procedure (figure 3), passing in a
facef containing the track point:

4.2 Evaluating the implicit function

When a new skeleton is added, it is sufficient for a single parti-
cle (lying inside the skeleton’s distance surface) to begin tracking
its closest point on the skeleton. That particle will then recruit its
neighbors to track points on the new skeleton, and in the next itera-
tion they will recruit their neighbors, and so on.

It sometimes happens that a particle has no track point: for example,
when a skeleton is removed, particles tracking points on it forget
their track points. In this case particles simply ta@ke 1—«, which

Yp < LOCAL-SEARCH(, Xp).

Evaluatingfs(xp) is now simple: For a non-closed skeleton surface,

we evaluate the distanakfrom X, to yp, and subtracts. For a

closed surface, we negatdf the patrticle is inside it, and then sub-
tractrs. (Each skeleton surface is checked in a pre-process step to

1By locally closest, we mean that all points 8im a neighborhood of,,

are farther away.

2In fact, p stores a pointer to a face stontainingyp.

causes them to move towards the centroids of their neighbors. The
region of skin that covered that skeleton will wither away, until all
of its particles are either destroyed in edge collapses (described in
the next section) or acquire new track points on other skeletons from
their neighbors.

There are two other cases in which particles forget their track
points. If a particle is outside of the implicit surface but its surface
normal points toward its track point, the particle would, according
to the rules described above, tend to back away from the track point,
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S)Ny k Collapse

o

Figure 7 We swapto improve the minimum angle of a triangle. A
(b) split introduces a new vertex by splitting a long edgecdllapse
removes a vertex by destroying a short edge.

Yo

Figure 5 In (), p is deciding between tracking or y;,. Since both
points lie on the same skeleton, it will chooge Note that the sur-
face normal ay;, is facing away fronp, so trackinglg, would yield a
negative value for the implicit function, whilg, would yield a posi-
tive value. In (b)yy is closer. Howevesp is on a different skeleton,
and will yield a lower implicit function value because its surface
normal is facing away frorp. p should therefore choose to tragk

cent particles.

Splitting and collapsing edges as described tendsdduymre edges

of approximately the desired length. Interleaving steps (1) and (2)
of the skin algorithm further tends to equalize edge lengths, allow-
ing patrticles to redistribute themselves more evenly after edge op-
erations are performed. In fact, we control the number of split and
collapse operations that can occur between repositioning steps by
sorting edges by the ratio of their actual length to their target length,
then considering split operations just on the last 5% of edges and
collapse operations just on the first 5% of edges. Any edge that is
too long (or too short) is still guaranteed to be split (or collapsed)
eventually.

skin these points

cease tracking

skeleton

Each edge operation affects the valence of nearby vertices. Since
Loop subdivision performs best on meshes with a majority of
valence-six vertices, we modify the rules slightly to favor the for-
mation of such vertices. For example, a proposed edge swap is eval-
uated according to: (1) how much it will increase or decrease the
minimum angle interior to its adjacent faces, and (2) the extent to

] o ) which it will increase (or decrease) the number of valence-six ver-
moving farther and farther from the implicit surface (see figure 6). tices around it. The other operations are “handicapped” in a similar

To preventthis, particles in this case simply forget their track points way. Such handicapping yields a small but noticeable improvement
andtakes = 1—aas above. The second case occurs when a particle i, the quality of the resultingubdivision surfaces.
is adjacent to atresseadge — that is, an edge whose two adjacent

faces form an angle of less than 60 degrees. We discuss this case . .
further in section 5. 4.4 Geometric constraints — creases

Figure 6 When the skin folds over so that an exterior particle’s nor-
mal points towards the skeleton, the particle ignores the track point
to avoid “backing away.”

The user might want to constrain the
skin's triangulation to include a sequence
of edges aligned along some curve.

4.3 Modifying the mesh connectivity

In step (2) of the skin algorithm we modify the skin’s connectivity
by performing the edge operations shown in figure 7. These opera-
tions were described in [10, 24]; conditions under which the opera-
tions are valid are discussed in [10].

We swap an edge when doing so increases the minimum angle
within its adjacent faces. As noted by Welch and Witkin [24], re-
peated application of this swap operation (always increasing the
minimum angle) computes a constrained Delaunay triangulation.
That is, it maximizes the minimum angle over all the triangles of
the mesh.

Each edge has an associated target length. We split an edge if it isFigure 8 In-
dentations  were

longer than 1.5 times its target length, and collapse the edge if it .

. . . created in the
is less than half its target length. These numbers are chosen in parte) e using
so that a collapse operation will not immediately be invoked on an ease curves.

Such an ability is required to model
piecewise-smooth surfaces that include
sharp “creases.” Many organic forms, in-
cluding human figures, can be described
as having such features. To support this,
we let the user first create a curve in-
teractively by drawing onto the skin sur-
face. We then split the triangles of the skin
through which the curve passes to pro-
duce a sequence of edges aligned along
this curve. Finally, the skin retriangulates
in the neighborhood of the curve to main-
tain a good triangulation subject to the
constraint that edges remain aligned along
the curve. The user can then interact with

edge that has just been split. We compute the target lengtaftir

the curve to change the shape of the sur-
edge as follows.

face. The foot model in figure 8 was created by drawing curves to

As mentioned in section 3, each skeleton has an associated targef10de! the creases between the toes, and then interactively pushing
each curve into the foot to create the indentations. In this way, the

length that the user can set. This specifies the desired size of trian- X A
gles for portions of skin growing over that skeleton. We also store USer ¢an create features that are not present in the implicit surface.

a target length value in each particle. In the régmsing step, each ~ Because the rules for refitening vertices do not force them to
particle sets its target length to a weighted sum of its current value, INtérpolate the implicit surface, the region of skin around the crease
the average target length of the particle’s neighbors, and the tar-Pl€nds smoothly to meet it.

get length of the skeleton currently tracked by the particle. (We use For particles and edges lying on a crease, we modify the skin algo-
weights of 0.4, 0.4 and 0.2, respectively.) The target length of an rithm as follows. First, edges lying along a crease are not allowed to
edge is taken to be the average of the target Iengths of its two adja-swap_ Second’ a particte|ying on a crease curve is constrained
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to stay orC. If plies on an endpoint dZ, its position is constrained

to remain at that endpoint. Otherwise, it computes its targétipos

tp by taking a convex combination of its current positignand

the midpointc, between its two neighboring particles on the crease
curve. Then, instead of moving under the influence of the implicit
function,p sets its new positiory, to be the point on the curve that
is closest tdy:

(b)

. ) Figure 10 In (a), a andb track their penetration pointg andz,.
We use a global search to compute this point, but a number of other  ¢is too far away fronze, so it has no penetration point. In (b), the
techniques, such as gradient descent, could be applied depending stressed edgstells adjacent particla to trackza. In (c), the surface
on the underlying curve representation. has smoothed out, 5 LOCAL-SEARCHreturns toa.

Xp = argmirjtp, — X|.
xeC

4.5 Termination . . o .
soon two adjacent regions of skin interpenetrate, forming a “bub-

In the repositioning step, we actually assign a particle its new po- ble” that expands to produce a second, unwanted layer of skin.
sition only if it is appreciably different from the current position.
Specifically, the new position must differ from the current one by
more than . 01 times the particle’s reference length. This prevents
the skin from continuing to make visually unnoticeable adjustments
to the particle’s positions after the surface is essentially stable.

In this section we discuss how we can prevent such self-intersection
efficiently by reusing the particles’ abilities to track a locally closest
point on some mesh, and by sharing information as in section 4.2.
A key observation is that local interpenetration typically occurs
between two portions of surface separated by a chain of stressed
still, we have observed two cases in which the algorithm does not edges. Our strategy is to initiatsvan-penetration behavior only as
terminate. The first can occur when the topology of the skeletons’ needed, starting at stressed edges and propagating along opposing
distance surface differs from that of the skin. The rules for mod- Surface regions. We illustrate the idea in figure 10.

ifying the skin’s connectivity do not change its surface topology. |, fiqre 10(a), we see the skin surface, in cross section, starting

If the user grows a skin over two skeletons that are initially close ; ; ;
) o buckle along the stressed edgéarticlea, which shares a face
together, and then pulls them far apart, the skin does not sponta- 9

) X X ; with s, receives notification frorato begin tracking its closest point

neously separate into two pieces. (In section 7 we describe how theZa on the opposite face, shown in figure 10(b). We zathe pene-

user can explicitly invoke this type obpological change.) Instead,  -+0n pointof a. '

it remains joined by a thin strand, along which particles continue

to move as edges are repeatedly split and collapsed. If the strand isAs particles are repositioned, each updates its penetration point us-

cut, the skin heals itself and stabilizes. ing the LocAL-SEARCHprocedure starting from its previous pene-
tration point, as well as each of its neighbors’ penetration points, if

rythey have them. If a local search starting from any of these points re-

Y tuns a point that is not the particle’s location, but is at a distance of

. . : =~ lessthan 1.5 times the particle’s reference length, the particle stores

with larger ones. This happens when a particle between the regionsy,ig oint as its new penetration point. Particles are in this way al-

drifts toward the centroid of its neighbors in the region with larger 5y¢ attempting to borrow penetration points from their neighbors.
triangles. As this happens, the particle’s shorter edges are stretched,

leading them to split and create new particles that repeat the pro-Thus, b acquires a penetration poit by using the lOCAL-
cess. We do not currently provide a solution to this, other than let- SEARCH starting fromz.. Whenc does the same — borrowing from
ting the user “freeze” the skin in that region. b — the resuliz; is too distant (more than 1.5 time% reference
length) sac “forgets” the penetration point.

The other case can occur when adjacent regions of skin have ve
different target lengths. In this case particles may continuousl
“swim” out from the region with small triangles toward the one

Another problem involves premature termination. This can occur
when the target length associated with a skeleton is large relative Whenever a particle with a valid penetration point passes through
to one of its dimensions. In that case, the region of skin attempting the surface containing its penetration point, it suspends the normal
to grow over the skeleton may necessarily have sharp edges. Therepositioning rules and moves back to the correct side of the sur-
tendency for particles to move to their neighbors’ centroids may face. The result is that a crease temporarily forms in the skin but
then outweigh their tendency to move toward the implicit surface, then resolves itself (figure 11). As the surface flattens out, parti-
and the skin stops. An effective remedy is for the user to reduce the cles track their penetration points back to themselves (figure 10(c)),
target length associated with the skeleton. upon which they forget their penetration point and revert to the nor-
mal repositioning rules.

5 Preventing self-intersection

Figure 9 Uneven expansion of a skin can lead to self-intersection.

Figure 11 With the non-penetration behavior, a crease forms along
the stressed edge, and then resolves itself as the skin grows.

One problem with the skin algorithm as stated is shown in figure 9.
During rapid expansion, one region of the skin may grow at a differ-
ent rate from a neighboring region. The skin begins to buckle, and
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6 Multiresolution editing

The approach to modeling we have targeted — sculpting complex /

surfaces by constructing the underlying masses that define their /
shape — naturally allows the userto work in a coarse-to-fine manner. . ~ ////’
That s, the user can begin with a coarse cylindrical shape to repre-
sentatorso, and then refine the surface, adding massesto define the
shapes of individual muscles, bones, and tendons. The subdivision
surface framework is naturally compatible with such an approach.
With each level of refinement, the surface can effectively “resolve”
detail at finer scales. The systems described in [15, 27] allow the To cut the skin, we split the edges and faces that cross a user-
user to add detail to a subdivision surface attiple scales by ma-  gpecified cutting plane, and stitch up the resulting holes with a sim-
nipulating vertices individually. We now explain how to extend the  ple triangulation. (If desired, we can place crease curves along the
skin algorithm with little modification towpportsubdivision skele- ¢yt to preserve its shape.) To join two portions of skin surface, we
tons A subdivision skeleton is like a regular skeleton except that remove a face on each portion to create two holes, then connect the
itis active only at specific levels of subdivision. When the skinis noles with a bridge of triangles. In either case, when editing the
subdivided, its vertices act asbdivision particleshat track points  topology of the skin it's important to edit the skeletons accordingly
on the subdivision skeletons active at that level. so that the implicit surface matches the skin’s new topology.

Intuitively, subdivision particles that lie inside the implicit surface
of a skeleton should move in the normal way (toward the implicit g goftware framework
surface). A particle far from any subdivision skeleton should remain

at the position it was initially assigned dugh subdivision, which  \ye geveloped the skin algorithm within a larger system consist-
we call itsbase pointin some range near the skeleton, a particle ing of 4 collection of C++ libraries that provide extensive support
should smoothly blend between its base point and the displacementyr 3p modeling and interaction. The mesh class consists of a col-
induced by the skeleton in the region of skin near the particle. lection of vertices, edges, and faces (generically called simplices)
We achieve this as follows. Each particle evaluates the implicit that store connectivity information as described in section 3. To im-
function F as before, sharing information with its neighbors and Plement skin, we first introduced a separate class, Tessellator, that
tracking a point on some skeleton active at the current level of sub- Operates on a mesh’s simplices according to some procedure, typi-
division. Each particle has an associated “cutoff distaltegqual cally by editing @nnectivity and vertex positions. We made a small
to 3 times its reference length, beyond which it is unaffected by modification to the existing simplex classes to allow a tessellator to
any skeleton. As before (section 4.1), its new position is computed Store arbitrary data directly on them.
from a weighted average of its current position, the centroid of its Thg skin algorithm is implemented by a skin tessellator, which is
neighbors, and its target pgsn: a type of 2D tessellator — that is, it operates on a region of sur-
face. Other types of tessellators include point tessellators and curve
tessellators, which are 0D and 1D tessellators, respectively. Each
Tessellator receives a callback every frame in which it iterates over
We now choose the target ptien its simplices and edits them according to its procedure. We enforce
(Fe) [ a7 ] 6] and weightso, 3, a_mdfy_ accordi_ng the rule that if multiplt_a tessellators attempt to e(_:iit the same sim-
to the value of the implicit function: plex, the tessellator with the lowest dimension wins. For example,
0l 314X whenF(xp) < 0, the particle sets  we representa curve constraint with a 1D tessellator that acts on its
> M O] 1]bp its target as before and uses weights vertices and edges to approximate the curve. A skin tessellator op-
a =0.3,8 = 0.3, andy = 0.4. erating on the surrounding surface is not allowed to edit the vertices
When the implicit function is 0 oM we choose values far andy and edges of the curve.
according to the above table tseg 5 = 1 — o — ~. For values of
F(xp) between 0 antil we choose the target pitien and weights
by interpolating the corresponding values listed in the table.

Figure 12 The skin does not detect the topology of the isosurface,
which is toroidal, and hence will interpenetrate unless the user inter-
venes.

Xp = aXp + BCp + tp.

A vertex is considered active only if it has moved within the last
32 frames. Edges and faces are considered active if some contained
vertex is active. We also activate simplices when the user performs
an operation that could cause particles to move, such as changing
7 Topology changes a skeleton’s offset distance or target length, or interactively moving

a constraint curve. Tessellators operate only on simplices that are
At each iteration, the skin evolves through local operations, using active. Since users typically edit just a local region of a surface at a
local information. Global properties of the skin surface, such as its time, this can significantly increase the interactivity of the system —
genus, are not taken into account (or modified). Consequently, we particularly when the user edits a subdivision skin, which may have
do not automatically detect topological changes to the implicit sur- a large number of inactive vertices.
face. Figure 12 shows an example of a skin growing over a toroidal
skeleton. When the new skeleton is first added, it changes the 9enuy  piscussion
of the implicit surface. The skin grows around the torus and through
itself in an attempt to fit the implicit surface. We could perhaps de-
tect this interpenetration and prevent it. However, since it is global
and not local, the method given in section 5 will not work.

As stated in the introduction, skin was designed to be used in an
interactive free-form modeling setting. Since our ultimate aim is to
create high-quality models, we believe our resutisidd be judged
Instead, we allow the user to explicitly change the genus of the skin by what types of models we can create within this framework. Al-
by joining two sections of surface or by cutting a region of skininto though we have not designed the final interface for our system, we
two parts. Because the skin will evolve a poor triangulation into a do have a preliminary implementation that lets the user create prim-
good one, we can perform these operations without worrying about itives either using SKETCH [26] or by importing them from other
leaving a good triangulation. modeling packages. The user can interactively create a ball of skin
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and grow it over a primitive. Editing operations include instructing  [7] Louise Gordon.How to Draw the Human Figure Penguin Books,

the skin to grow over a new skeleton, adjusting a skeleton’s offset New York, 1979.
distance or target length, drawing and editing crease curves, and [g] Burne HogarthDynamic AnatomyWatson-Guptill Publications, New
changing the genus of the skin surface. York, paperback edition, 1990.

With this system we have created the models shown in fig- [9] HuguesHoppe, Tony DeRose, Tom Duchamp, Mark Halstead, Hubert
ures 8, 13, 14, and 15. The torso model was created by growing skin Jin, John McDonald, Jean Schweitzer, and Werner Stuetzle. Piece-
over the skeleton shown in the top image of figure 15. The skele- wise smooth surface reconstruction. SIGGRAPH 94 Conference
tons were created by a user with no artistic training using SKETCH. Proceedingspp. 295-302. ACM SIGGRAPH, July 1994.

Some skeletons were created by growing skin over a sketched prim-[10] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and
itive. The skin surface was edited at both one and two levels of Werner Stuetzle. Mesh optimization. 8iIGGRAPH 93 Conference
subdivision. For example, the muscles of the neck were added as ~ Proceedingspp. 19-26. ACM SIGGRAPH, August 1993.

subdivision skeletons. The foot and hand models demonstrate how{11] Takeo Igarashi, Satoshi Matsuoka, and Hidehiko Tanaka. Teddy: A
skin can be used to create cartoonish effects. Both models are ex-  sketching interface for 3d freeform design.StGGRAPH 99 Confer-

pressive, yet were built by growing skin over simple skeletons. The ence Proceeding#&CM SIGGRAPH, August 1999.

face model is more complex. Note the use of crease curves to de-[12] Michael A. Kowalski, Lee Markosian, J.D. Northrup, Lubomir Bour-

lineate the mouth, nose, and eye sockets. This model would be dif- dev, Ronen Barzel, Loring S. Holden, and John F. Hughes. Art-based

ficult to create using a surface patch representation. The skeletons,  rendering of fur, grass, and trees. SiIGGRAPH 99 Conference Pro-

created by a skilled computer artist using a conventional modeling ceedingsACM SIGGRAPH, August 1999.

system, are shown in the top image of figure 13. [13] C. Loop. Smooth subdivision surfaces based on triangles. Master’s
thesis, University of Utah, 1987.

10 Future work [14] J. V. Miller, D. E. Breen, W. E. Lorensen, R. M. O’Bara, and M. J.

Wozny. Geometrically deformed models: A method for extracting

. . . . - closed geometric models from volume data.SiKGGRAPH 91 Con-
Future work will proceed in two directions. We are continuing to ference Proceedingpp. 217—226. ACM SIGGRAPH, July 1991.

design an end-to-end interface to allow a skilled artist to create ex- 15
ressive 3D scenes. This will include facilities for definimder- o : - .

E/ing skeletons and stick figures, along the lines of [6 ZlerngZS] an of subdivision surfaces. Technical report, University of Washington,

. . Lo X - P 1997.

interface for creating and guiding the skin, an interface for editing ) ] )

the surface at fine levels of detail, and an interface for assigning and[16] Walt Reed, e‘::tof 'I}he F'?(”'e: An App.roaﬁ.h t°2 Déamnglani Con-

customizing procedural textures for rendering, some of which are struction North Light Books, Cincinnati, Ohio, 2nd &n, 1984.

described in these proceedings [12]. [17] A.A.G. Requicha. Toward a theory of geometric tolerancingerna-
tional Journal of Robotics Researc®(4):45-49, 1983.

[18] Fritz Schider. An Atlas of Anatomy for ArtistsDover Publications,
Inc., New York, 3rd american edition, 1957.

—

Kari Pulli and Michael Lounsbery. Hierarchicaligdg and rendering

We have also begun to investigate modifying the skin algorithm to
perform mesh optimization, remeshing for subdivision connectiv-
ity, and mesh decimation.
[19] J. SchweitzerAnalysis and application of subdivision surfac&hD
thesis, University of Washington, 1996.
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Figure 13 This face model consists of a skin surface with about
3500 particles. The skeleton, shown in the upper image, was created
using a commercial modeling package. Notice the fine detail around
the nose and eyes, which was created using creases in the base mesh,
and subdivision skeletons.

Figure 15 The torso model was edited at 2 levels of subdivision.
For example, the vertical neck muscles and the spine were added as
. . . . . subdivision skeletons. Notice the indications of underlying muscles,
Figure 14 This frog hand is based on an image from a children’s especially around the neck ying
book. It was made from 10 skeleton meshes. Notice the smooth web- ’
bing between the fingers.




