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Abstract

We present a new particle-based surface representation with which
a user can interactively sculpt free-form surfaces. The particles
maintain mesh connectivity and operate under rules that lead them
to form triangulations with properties that make them suitable for
use in subdivision. A user interactively guides the particles, which
we call skin, to grow over a given collection of polyhedral ele-
ments (orskeletons), yielding a smooth surface (through subdivi-
sion) that approximates the underlying skeletal shapes. Skin resem-
bles blobby modeling in the constructive approach to modeling it
supports, but allows a richer vocabulary of skeleton shapes, sup-
ports sharp creases where desired, and provides a convenient mech-
anism for adding multiresolution surface detail.

CR Categories and Subject Descriptors:I.3.5 [Computer Graph-
ics]: Computational Geometry and Object Modeling I.3.6 [Com-
puter Graphics]: Methodology and Techniques

Additional Key Words: Free-form modeling, meshes, subdivision,
multiresolution

1 Introduction

The algorithm described in this paper derives from our ongoing ef-
fort to build a free-form modeling system with a direct interface –
that is, one in which the user defines shapes by sketching them di-
rectly as they would appear from a given viewpoint. In particular,
we seek to extend the principles developed in the SKETCH sys-
tem [26] – rapid construction of approximate shapes via direct in-
teraction – to the problem of free-form modeling. The Teddy system
presented in these proceedings [11] targets similar goals, though we
seek to provide more fine-grained control over the resulting shape,
including the ability to add surface detail at multiple scales. An im-
portant goal is that the interface should allow a user with skill at
drawing on paper to apply this skill to model compelling 3D forms.

With that in mind, we seek to build a system in which the user
models complex surfaces by first constructing simplified represen-
tations of the underlying masses that give them their form, then
“oversketches” these masses with a smooth surface that approxi-
mates their collective shape. We chose this approach because of its
tractability (SKETCH and Teddy, as well as our system for sketch-
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ing 3D curves [6], describe techniques that could be applied to de-
fine the “underlying masses”), and because it is natural – that is, it
resembles techniques commonly used by artists and recommended
in books on art instruction [1, 5, 7, 8, 16, 18, 22].

This paper describes our solution to a sub-problem that arises in im-
plementing our approach: given a collection of “masses” (orskele-
tons) represented as polygon meshes, each with an associated offset
(typically small), construct a smooth surface that approximates the
distance surface defined by the skeletons and their offsets. Distance
surfaces, discussed in [3] and defined in section 3 below, typically
have sharp creases that are not desired. Thus the final surface should
smoothly approximate the distance surface, not fit it exactly. The
solution should work in an interactive setting, continually updating
the surface as skeletons are added, manipulated, or removed.

Our solution, theskinalgorithm, works by constructing a subdivi-
sion surface control mesh that roughly fits the shape of the distance
surface. The control mesh in turn defines a smooth surface with a
similar shape. A key contribution of this paper is to provide an algo-
rithm for generating asuitablecontrol mesh for use in subdivision.
Simply matching a given shape is not sufficient – the triangulation
of the control mesh has a strong influence on the qualities of the re-
sulting surface. Smaller triangles provide less “smoothing” effect,
yielding a surface that more closely fits the control mesh, and –
more importantly – irregular triangulations can greatly reduce the
fairness of the limit surface. This can be seen in figure 1.

The skin algorithm is good forrapid construction ofapproximate
free-form shapes. It is not suitable for applications that require ex-
act control of the final shape. Skin supports fast, intuitive editing
of features at multiple resolutions and produces piecewise smooth
surfaces with creases or sharp corners where desired. Since the al-
gorithm manipulates a polygon mesh, rendering can be done effi-
ciently on common graphics hardware.

Together with these advantages, the skin algorithm has some draw-
backs: it is based on an iterative algorithm that is not guaranteed
to converge to a fixed triangulation – and sometimes doesn’t. The
exact results depend not just on the primitives used to define the
surface, but also on the order of the user’s operations. Finally, the
behavior of the skin depends on the size of its triangles (which the
user can control). It would be preferable not to expose the user to
the issue of triangle size as a means of controlling surface shape.
The other difficulties can be alleviated by providing tools to let the
user control the skin’s behavior, as we will illustrate. Because we
designed skin for use in an interactive setting, we do not consider
any of these problems to be severe.

2 Related work

The skin algorithm resembles the methods for iteratively evolving
a triangulation described in [9, 10, 20, 23, 24]. It has much in com-
mon with Miller et al.’s “volumetrically deformed models” [14] in
which a balloon-like surface is inflated under constraints to match a
volumetrically defined implicit function. Also, because the skin al-
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Figure 1 Triangulation matters. Two triangulations of the same shape ((a) and (c)) produce different results when subdivided ((b) and (d)).
The skin algorithm produces even triangulations, avoiding skinny triangles like those in (a) that lead to unexpected wiggles and bumps when
subdivided.

gorithm treats vertices as particles that interact with their neighbors
while being guided by an implicit function, it resembles the particle
system methods described in [21, 25]. (An important difference is
that skin particles have explicit connectivity information.) Skin is
related to the large body of work on implicit surfaces, particularly
offset and convolution surfaces [3, 17] and blobby modeling [2, 4],
in the constructive approach to modeling it provides.

For multiresolution editing, we use Loop subdivision meshes [13],
including the rules for defining creases and corners described
in [9, 19]. Previous work on subdivision surfaces has primarily fo-
cused on specifying subdivision rules and analyzing properties of
the limit surface,given a control mesh. Hoppeet al. [9] present a
means to construct a good-quality control mesh for a subdivision
surface that approximates a given polygon mesh (typically scanned
from a real model). We are not aware of any work that discusses
ways to construct suitable control meshes for subdivision surfaces
from scratch. Recently Zorinet al. [27] and Pulli [15] presented
systems that let the user add detail to a subdivision surface (given
the control mesh). With these systems the user edits details of the
subdivision surface (at a given resolution) by manipulating individ-
ual vertices directly. The skin algorithm, though originally designed
to construct a good-quality control mesh in the first place, is readily
extended to provide a mechanism for adding detail at finer scales
more conveniently than by individual control point manipulations.

3 Terms and definitions

Our meshes are triangle meshes, represented in the usual way: each
consists of a collection of vertices, edges and faces with local con-
nectivity information. That is, each vertex stores pointers to its ad-
jacent edges; each edge stores pointers to the two vertices that de-
fine it and to at most two adjacent faces; each face stores point-
ers to the three edges and vertices that define it.Skeletons, repre-
sented with this mesh data structure, may be non-self-intersecting
closed surfaces, surfaces with boundary, polylines or even isolated
points. With each skeleton is associated a positive real-valuedoff-
set. The skin algorithm iteratively modifies theskinmesh (a closed
surface) to roughly fit the distance surface defined by the skeletons
and their offsets. Each skeleton also has an associatedtarget length
that specifies the desired size of triangles the skin should generate
when growing over that skeleton. We refer to vertices of the skin
mesh asparticles. It is convenient to associate with each particle a
reference lengththat measures the scale of the skin mesh near that
particle. We take the reference length to be the average length of
the particle’s adjacent edges.

Let Sdenote the set of skeletons.For a given skeletons∈ Swith as-
sociated offsetrs, and a pointx in space, letds(x) denote the signed
distance fromx to s. That is,ds(x) is the distance fromx to the
nearest point ons, but if s is a closed surface andx is inside it, the

“distance” is taken to be negative. Now letfs(x) = ds(x) − rs. The
distance surfacedefined by a single skeleton and its offset is just
the implicit surface defined byfs(x) = 0. The distance surface de-
fined by the collection of skeletons and their offsets is the implicit
surface defined byF(x) = 0, whereF is the continuous function
given by:

F(x) = min{fs(x) : s∈ S}.
The rules for positioning particles described in section 4.1 are de-
signed so that the skin approximates this surface. They also allow
us to evaluate the implicit function efficiently.

4 The skin algorithm

At a high level, the skin algorithm closely resembles algorithms
described in [10] and [24] for iteratively evolving a triangle mesh.
The primary difference is in the implementation of step (1) of the
main loop:

repeat
(1) reposition particles
(2) modify the skin’s connectivity

until no changes occur

Intuitively, in step (1) particles move toward the implicit surface
while tending to distribute themselves more evenly and smoothing
out wrinkles and bumps in the skin. In step (2), the connectivity
of the skin is modified to produce triangles that are more nearly
equilateral and whose size is roughly the target length specified by
nearby skeletons. We now describe steps (1) and (2) in detail.

4.1 Repositioning particles

The rules for repositioning particles are designed to allow the skin
to grow adaptively to conform to the changing implicit surface
as skeletons are added, repositioned, removed, or their offsets are
edited. In step (1) of the skin algorithm, each particle is visited in
turn. The new positionx′p of particlep is computed as a weighted
sum of its current positionxp, the centroidcp of its neighbors’ po-
sitions, and a target positiontp chosen to bring the particle closer to
the implicit surface:

x′p = αxp + βcp + γtp.

The weightsα, β, andγ are non-negative and sum to one. We al-
ways takeα = 0. 3, and chooseβ according to how smooth the
skin is nearp. (Thenγ is taken to be 1− α − β.) We estimate the
smoothness of the skin nearp by calculating the minimum, over
each edge adjacent top, of the dot product of the normals of the
two faces adjacent to that edge. This value (call itm) lies between
1 and−1. Whenm is close to 1, the skin is smooth nearp; when
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m is close to−1, the skin contains one or more sharp edges near
p. A large value forβ results in a greater smoothing effect, so we
chooseβ = (1−α)βscale, whereβscale is the function ofmshown in
figure 2. This function, chosen heuristically, seems to produce good
results. It has the effect of letting the skin move briskly toward the
implicit surface where the skin is reasonably smooth. Where the
skin is bumpy or uneven, it slows or stops moving until it smooths
out again, then resumes its motion toward the implicit surface.

-0.5 0 0.5 1
m

0.2

0.4

0.6

0.8

1

beta scale

Figure 2 The coefficientβscale chosen
as a function of the minimum dot product
m. This function is a quarter ellipse.

The target position
tp is chosen so that
the skin tends to
expand when inside
the implicit surface,
stay fixed when
on it, and contract
when outside it.
We can determine
whether the particle
is inside, on, or
outside the implicit
surface according
to whetherF(xp) is
negative, zero, or

positive, respectively. Also, by definition, the magnitude of this
value specifies a lower bound on the distance from the particle to
the nearest point on the implicit surface. We thus set the target
position to be a displacement along the particle’s surface normal
~np by an amountd determined byF(xp):

tp = xp + d~np.

We can taked = −F(xp) unless this value is large (that is, the par-
ticle is far from the implicit surface). To prevent the particle from
taking excessively large steps, we restrict the magnitude ofd to be
no more than the reference length of the particle.

Becauseβ is always nonzero, skin particles tend not to arrive ex-
actly at the implicit surface. (Where it is concave they lie outside
it, and where it is convex they lie inside it.) As mentioned earlier,
we prefer this behavior, since the distance surface defined by the
skeletons typically has unwanted sharp creases. For this reason, we
can think of the implicit function as guiding rather than defining the
skin’s final shape.

4.2 Evaluating the implicit function

The skin algorithm is intended to work with skeletons that may
be finely tessellated (as when representing muscle masses, such as
those in figure 15). For the algorithm to be usable in an interactive
setting, it is important to evaluate the implicit function efficiently.
The particles do this by exploiting locality in two ways. To explain
this, let’s first assume there is only a single skeleton,s. Each particle
p tracks a pointyp ons that is locally closest top.1 We refer toyp as
p’s track point.2 After updating its position xp, p updates its track
point using the LOCAL-SEARCH procedure (figure 3), passing in a
facef containing the track point:

yp← LOCAL-SEARCH(f , xp).

Evaluatingfs(xp) is now simple: For a non-closed skeleton surface,
we evaluate the distanced from xp to yp, and subtractrs. For a
closed surface, we negated if the particle is inside it, and then sub-
tract rs. (Each skeleton surface is checked in a pre-process step to

1By locally closest, we mean that all points ons in a neighborhood ofyp

are farther away.
2In fact,p stores a pointer to a face ofs containingyp.

LOCAL-SEARCH(f ,x)
y← closest point tox on f
if y is on boundary off

foreachadjacent facefi containingy
if closest point tox on fi 6= y

return LOCAL-SEARCH(fi, x)
return y

Figure 3 The LOCAL-SEARCH algorithm, starting from facef on
a meshM, traverses faces ofM, always moving closer to pointx, to
reach a pointy on M that is locally closest tox.

yp yq

p q

yqyp

p q

Figure 4 A particlep can use its neighbor’s track pointyq to get out
of a local minimum.

determine whether it is closed.) For closed surfaces, we can deter-
mine when a particle is inside provided that the particle has actually
tracked the globally closest pointyp on the skeleton. For then the
plane containingyp that is perpendicular to the vector fromyp to
xp divides space into two parts. The skeleton locally nearyp lies all
in one part and the particle lies in the other. An examination of the
face normals aroundyp determines whetherp is inside or outside
the surface.

Of course, the LOCAL-SEARCH procedure may return a point on
the skeleton that is onlylocally closest top (see figure 4). To over-
come this, particles exploit a second kind of locality: they share in-
formation with their immediate neighbors. Thus, to evaluatefs(xp),
p runs the LOCAL-SEARCH procedure starting from its own track
point, and then again starting from the track points of each of its
neighbors in turn. The particle selects the result yielding the small-
est distance, and stores this as its new track point.

When there are multiple skeletons,p can switch to a track point
on a different skeleton if doing so yields a smallervalue for the
implicit function. It can switch to a different track point on the same
skeleton, though, only if doing so yields a smallerdistance. The
distinction between these cases occurs only when the skeleton is a
closed surface. In this case, the particle should first find the closest
point on the skeleton, then evaluate the implicit function from the
signed distance to this point. Figure 5 shows examples of these two
cases.

When a new skeleton is added, it is sufficient for a single parti-
cle (lying inside the skeleton’s distance surface) to begin tracking
its closest point on the skeleton. That particle will then recruit its
neighbors to track points on the new skeleton, and in the next itera-
tion they will recruit their neighbors, and so on.

It sometimes happens that a particle has no track point: for example,
when a skeleton is removed, particles tracking points on it forget
their track points. In this case particles simply takeβ = 1−α, which
causes them to move towards the centroids of their neighbors. The
region of skin that covered that skeleton will wither away, until all
of its particles are either destroyed in edge collapses (described in
the next section) or acquire new track points on other skeletons from
their neighbors.

There are two other cases in which particles forget their track
points. If a particle is outside of the implicit surface but its surface
normal points toward its track point, the particle would, according
to the rules described above, tend to back away from the track point,
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Figure 5 In (a),p is deciding between trackingyp or y′p. Since both
points lie on the same skeleton, it will chooseyp. Note that the sur-
face normal aty′p is facing away fromp, so trackingy′p would yield a
negative value for the implicit function, whileyp would yield a posi-
tive value. In (b),y′p is closer. However,yp is on a different skeleton,
and will yield a lower implicit function value because its surface
normal is facing away fromp. p should therefore choose to trackyp.

these points
cease tracking

skeleton

skin

Figure 6 When the skin folds over so that an exterior particle’s nor-
mal points towards the skeleton, the particle ignores the track point
to avoid “backing away.”

moving farther and farther from the implicit surface (see figure 6).
To prevent this, particles in this case simply forget their track points
and takeβ = 1−α as above. The second case occurs when a particle
is adjacent to astressededge – that is, an edge whose two adjacent
faces form an angle of less than 60 degrees. We discuss this case
further in section 5.

4.3 Modifying the mesh connectivity

In step (2) of the skin algorithm we modify the skin’s connectivity
by performing the edge operations shown in figure 7. These opera-
tions were described in [10, 24]; conditions under which the opera-
tions are valid are discussed in [10].

We swap an edge when doing so increases the minimum angle
within its adjacent faces. As noted by Welch and Witkin [24], re-
peated application of this swap operation (always increasing the
minimum angle) computes a constrained Delaunay triangulation.
That is, it maximizes the minimum angle over all the triangles of
the mesh.

Each edge has an associated target length. We split an edge if it is
longer than 1.5 times its target length, and collapse the edge if it
is less than half its target length. These numbers are chosen in part
so that a collapse operation will not immediately be invoked on an
edge that has just been split. We compute the target length foreach
edge as follows.

As mentioned in section 3, each skeleton has an associated target
length that the user can set. This specifies the desired size of trian-
gles for portions of skin growing over that skeleton. We also store
a target length value in each particle. In the repositioning step, each
particle sets its target length to a weighted sum of its current value,
the average target length of the particle’s neighbors, and the tar-
get length of the skeleton currently tracked by the particle. (We use
weights of 0.4, 0.4 and 0.2, respectively.) The target length of an
edge is taken to be the average of the target lengths of its two adja-

Split

Swap Collapse

Figure 7 We swapto improve the minimum angle of a triangle. A
split introduces a new vertex by splitting a long edge. Acollapse
removes a vertex by destroying a short edge.

cent particles.

Splitting and collapsing edges as described tends to produce edges
of approximately the desired length. Interleaving steps (1) and (2)
of the skin algorithm further tends to equalize edge lengths, allow-
ing particles to redistribute themselves more evenly after edge op-
erations are performed. In fact, we control the number of split and
collapse operations that can occur between repositioning steps by
sorting edges by the ratio of their actual length to their target length,
then considering split operations just on the last 5% of edges and
collapse operations just on the first 5% of edges. Any edge that is
too long (or too short) is still guaranteed to be split (or collapsed)
eventually.

Each edge operation affects the valence of nearby vertices. Since
Loop subdivision performs best on meshes with a majority of
valence-six vertices, we modify the rules slightly to favor the for-
mation of such vertices. For example, a proposed edge swap is eval-
uated according to: (1) how much it will increase or decrease the
minimum angle interior to its adjacent faces, and (2) the extent to
which it will increase (or decrease) the number of valence-six ver-
tices around it. The other operations are “handicapped” in a similar
way. Such handicapping yields a small but noticeable improvement
in the quality of the resulting subdivision surfaces.

4.4 Geometric constraints – creases

Figure 8 In-
dentations were
created in the
foot model using
crease curves.

The user might want to constrain the
skin’s triangulation to include a sequence
of edges aligned along some curve.
Such an ability is required to model
piecewise-smooth surfaces that include
sharp “creases.” Many organic forms, in-
cluding human figures, can be described
as having such features. To support this,
we let the user first create a curve in-
teractively by drawing onto the skin sur-
face. We then split the triangles of the skin
through which the curve passes to pro-
duce a sequence of edges aligned along
this curve. Finally, the skin retriangulates
in the neighborhood of the curve to main-
tain a good triangulation subject to the
constraint that edges remain aligned along
the curve. The user can then interact with
the curve to change the shape of the sur-

face. The foot model in figure 8 was created by drawing curves to
model the creases between the toes, and then interactively pushing
each curve into the foot to create the indentations. In this way, the
user can create features that are not present in the implicit surface.
Because the rules for repositioning vertices do not force them to
interpolate the implicit surface, the region of skin around the crease
blends smoothly to meet it.

For particles and edges lying on a crease, we modify the skin algo-
rithm as follows. First, edges lying along a crease are not allowed to
swap. Second, a particlep lying on a crease curveC is constrained
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to stay onC. If p lies on an endpoint ofC, its position is constrained
to remain at that endpoint. Otherwise, it computes its target position
tp by taking a convex combination of its current positionxp and
the midpointcp between its two neighboring particles on the crease
curve. Then, instead of moving under the influence of the implicit
function,p sets its new positionx′p to be the point on the curve that
is closest totp:

x′p = argmin
x∈C

|tp − x|.

We use a global search to compute this point, but a number of other
techniques, such as gradient descent, could be applied depending
on the underlying curve representation.

4.5 Termination

In the repositioning step, we actually assign a particle its new po-
sition only if it is appreciably different from the current position.
Specifically, the new position must differ from the current one by
more than . 01 times the particle’s reference length. This prevents
the skin from continuing to make visually unnoticeable adjustments
to the particle’s positions after the surface is essentially stable.

Still, we have observed two cases in which the algorithm does not
terminate. The first can occur when the topology of the skeletons’
distance surface differs from that of the skin. The rules for mod-
ifying the skin’s connectivity do not change its surface topology.
If the user grows a skin over two skeletons that are initially close
together, and then pulls them far apart, the skin does not sponta-
neously separate into two pieces. (In section 7 we describe how the
user can explicitly invoke this type of topological change.) Instead,
it remains joined by a thin strand, along which particles continue
to move as edges are repeatedly split and collapsed. If the strand is
cut, the skin heals itself and stabilizes.

The other case can occur when adjacent regions of skin have very
different target lengths. In this case particles may continuously
“swim” out from the region with small triangles toward the one
with larger ones. This happens when a particle between the regions
drifts toward the centroid of its neighbors in the region with larger
triangles. As this happens, the particle’s shorter edges are stretched,
leading them to split and create new particles that repeat the pro-
cess. We do not currently provide a solution to this, other than let-
ting the user “freeze” the skin in that region.

Another problem involves premature termination. This can occur
when the target length associated with a skeleton is large relative
to one of its dimensions. In that case, the region of skin attempting
to grow over the skeleton may necessarily have sharp edges. The
tendency for particles to move to their neighbors’ centroids may
then outweigh their tendency to move toward the implicit surface,
and the skin stops. An effective remedy is for the user to reduce the
target length associated with the skeleton.

5 Preventing self-intersection

Figure 9 Uneven expansion of a skin can lead to self-intersection.

One problem with the skin algorithm as stated is shown in figure 9.
During rapid expansion, one region of the skin may grow at a differ-
ent rate from a neighboring region. The skin begins to buckle, and
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(a) (b) (c)

Figure 10 In (a), a andb track their penetration pointsza andzb.
c is too far away fromzc, so it has no penetration point. In (b), the
stressed edges tells adjacent particlea to trackza. In (c), the surface
has smoothed out, soa’s LOCAL-SEARCHreturns toa.

soon two adjacent regions of skin interpenetrate, forming a “bub-
ble” that expands to produce a second, unwanted layer of skin.

In this section we discuss how we can prevent such self-intersection
efficiently by reusing the particles’ abilities to track a locally closest
point on some mesh, and by sharing information as in section 4.2.
A key observation is that local interpenetration typically occurs
between two portions of surface separated by a chain of stressed
edges. Our strategy is to initiate anon-penetration behavior only as
needed, starting at stressed edges and propagating along opposing
surface regions. We illustrate the idea in figure 10.

In figure 10(a), we see the skin surface, in cross section, starting
to buckle along the stressed edges. Particlea, which shares a face
with s, receives notification froms to begin tracking its closest point
za on the opposite face, shown in figure 10(b). We callza thepene-
tration pointof a.

As particles are repositioned, each updates its penetration point us-
ing the LOCAL-SEARCHprocedure starting from its previous pene-
tration point, as well as each of its neighbors’ penetration points, if
they have them. If a local search starting from any of these points re-
turns a point that is not the particle’s location, but is at a distance of
less than 1.5 times the particle’s reference length, the particle stores
this point as its new penetration point. Particles are in this way al-
ways attempting to borrow penetration points from their neighbors.

Thus, b acquires a penetration pointzb by using the LOCAL-
SEARCH starting fromza. Whenc does the same – borrowing from
b – the resultzc is too distant (more than 1.5 timesc’s reference
length) soc “forgets” the penetration point.

Whenever a particle with a valid penetration point passes through
the surface containing its penetration point, it suspends the normal
repositioning rules and moves back to the correct side of the sur-
face. The result is that a crease temporarily forms in the skin but
then resolves itself (figure 11). As the surface flattens out, parti-
cles track their penetration points back to themselves (figure 10(c)),
upon which they forget their penetration point and revert to the nor-
mal repositioning rules.

Figure 11 With the non-penetration behavior, a crease forms along
the stressed edge, and then resolves itself as the skin grows.
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6 Multiresolution editing

The approach to modeling we have targeted – sculpting complex
surfaces by constructing the underlying masses that define their
shape – naturally allows the user to work in a coarse-to-fine manner.
That is, the user can begin with a coarse cylindrical shape to repre-
sent a torso, and then refine the surface, adding masses to define the
shapes of individual muscles, bones, and tendons. The subdivision
surface framework is naturally compatible with such an approach.
With each level of refinement, the surface can effectively “resolve”
detail at finer scales. The systems described in [15, 27] allow the
user to add detail to a subdivision surface at multiple scales by ma-
nipulating vertices individually. We now explain how to extend the
skin algorithm with little modification to supportsubdivision skele-
tons. A subdivision skeleton is like a regular skeleton except that
it is active only at specific levels of subdivision. When the skin is
subdivided, its vertices act assubdivision particlesthat track points
on the subdivision skeletons active at that level.

Intuitively, subdivision particles that lie inside the implicit surface
of a skeleton should move in the normal way (toward the implicit
surface). A particle far from any subdivision skeleton should remain
at the position it was initially assigned through subdivision, which
we call itsbase point. In some range near the skeleton, a particle
should smoothly blend between its base point and the displacement
induced by the skeleton in the region of skin near the particle.

We achieve this as follows. Each particle evaluates the implicit
function F as before, sharing information with its neighbors and
tracking a point on some skeleton active at the current level of sub-
division. Each particle has an associated “cutoff distance”M, equal
to 3 times its reference length, beyond which it is unaffected by
any skeleton. As before (section 4.1), its new position is computed
from a weighted average of its current position, the centroid of its
neighbors, and its target position:

x′p = αxp + βcp + γtp.

F(xp) α γ tp

0 .3 .4 xp

≥ M 0 1 bp

We now choose the target position
and weightsα, β, andγ according
to the value of the implicit function:
when F(xp) < 0, the particle sets
its target as before and uses weights
α = 0. 3, β = 0. 3, andγ = 0. 4.

When the implicit function is 0 orM we choose values forα andγ
according to the above table, setting β = 1− α− γ. For values of
F(xp) between 0 andM we choose the target position and weights
by interpolating the corresponding values listed in the table.

7 Topology changes

At each iteration, the skin evolves through local operations, using
local information. Global properties of the skin surface, such as its
genus, are not taken into account (or modified). Consequently, we
do not automatically detect topological changes to the implicit sur-
face. Figure 12 shows an example of a skin growing over a toroidal
skeleton. When the new skeleton is first added, it changes the genus
of the implicit surface. The skin grows around the torus and through
itself in an attempt to fit the implicit surface. We could perhaps de-
tect this interpenetration and prevent it. However, since it is global
and not local, the method given in section 5 will not work.

Instead, we allow the user to explicitly change the genus of the skin
by joining two sections of surface or by cutting a region of skin into
two parts. Because the skin will evolve a poor triangulation into a
good one, we can perform these operations without worrying about
leaving a good triangulation.

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������

Figure 12 The skin does not detect the topology of the isosurface,
which is toroidal, and hence will interpenetrate unless the user inter-
venes.

To cut the skin, we split the edges and faces that cross a user-
specified cutting plane, and stitch up the resulting holes with a sim-
ple triangulation. (If desired, we can place crease curves along the
cut to preserve its shape.) To join two portions of skin surface, we
remove a face on each portion to create two holes, then connect the
holes with a bridge of triangles. In either case, when editing the
topology of the skin it’s important to edit the skeletons accordingly
so that the implicit surface matches the skin’s new topology.

8 Software framework

We developed the skin algorithm within a larger system consist-
ing of a collection of C++ libraries that provide extensive support
for 3D modeling and interaction. The mesh class consists of a col-
lection of vertices, edges, and faces (generically called simplices)
that store connectivity information as described in section 3. To im-
plement skin, we first introduced a separate class, Tessellator, that
operates on a mesh’s simplices according to some procedure, typi-
cally by editing connectivity and vertex positions. We made a small
modification to the existing simplex classes to allow a tessellator to
store arbitrary data directly on them.

The skin algorithm is implemented by a skin tessellator, which is
a type of 2D tessellator – that is, it operates on a region of sur-
face. Other types of tessellators include point tessellators and curve
tessellators, which are 0D and 1D tessellators, respectively. Each
Tessellator receives a callback every frame in which it iterates over
its simplices and edits them according to its procedure. We enforce
the rule that if multiple tessellators attempt to edit the same sim-
plex, the tessellator with the lowest dimension wins. For example,
we represent a curve constraint with a 1D tessellator that acts on its
vertices and edges to approximate the curve. A skin tessellator op-
erating on the surrounding surface is not allowed to edit the vertices
and edges of the curve.

A vertex is considered active only if it has moved within the last
32 frames. Edges and faces are considered active if some contained
vertex is active. We also activate simplices when the user performs
an operation that could cause particles to move, such as changing
a skeleton’s offset distance or target length, or interactively moving
a constraint curve. Tessellators operate only on simplices that are
active. Since users typically edit just a local region of a surface at a
time, this can significantly increase the interactivity of the system –
particularly when the user edits a subdivision skin, which may have
a large number of inactive vertices.

9 Discussion

As stated in the introduction, skin was designed to be used in an
interactive free-form modeling setting. Since our ultimate aim is to
create high-quality models, we believe our results should be judged
by what types of models we can create within this framework. Al-
though we have not designed the final interface for our system, we
do have a preliminary implementation that lets the user create prim-
itives either using SKETCH [26] or by importing them from other
modeling packages. The user can interactively create a ball of skin
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and grow it over a primitive. Editing operations include instructing
the skin to grow over a new skeleton, adjusting a skeleton’s offset
distance or target length, drawing and editing crease curves, and
changing the genus of the skin surface.

With this system we have created the models shown in fig-
ures 8, 13, 14, and 15. The torso model was created by growing skin
over the skeleton shown in the top image of figure 15. The skele-
tons were created by a user with no artistic training using SKETCH.
Some skeletons were created by growing skin over a sketched prim-
itive. The skin surface was edited at both one and two levels of
subdivision. For example, the muscles of the neck were added as
subdivision skeletons. The foot and hand models demonstrate how
skin can be used to create cartoonish effects. Both models are ex-
pressive, yet were built by growing skin over simple skeletons. The
face model is more complex. Note the use of crease curves to de-
lineate the mouth, nose, and eye sockets. This model would be dif-
ficult to create using a surface patch representation. The skeletons,
created by a skilled computer artist using a conventional modeling
system, are shown in the top image of figure 13.

10 Future work

Future work will proceed in two directions. We are continuing to
design an end-to-end interface to allow a skilled artist to create ex-
pressive 3D scenes. This will include facilities for definingunder-
lying skeletons and stick figures, along the lines of [6, 11, 26], an
interface for creating and guiding the skin, an interface for editing
the surface at fine levels of detail, and an interface for assigning and
customizing procedural textures for rendering, some of which are
described in these proceedings [12].

We have also begun to investigate modifying the skin algorithm to
perform mesh optimization, remeshing for subdivision connectiv-
ity, and mesh decimation.
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Figure 13 This face model consists of a skin surface with about
3500 particles. The skeleton, shown in the upper image, was created
using a commercial modeling package. Notice the fine detail around
the nose and eyes, which was created using creases in the base mesh,
and subdivision skeletons.

Figure 14 This frog hand is based on an image from a children’s
book. It was made from 10 skeleton meshes. Notice the smooth web-
bing between the fingers.

Figure 15 The torso model was edited at 2 levels of subdivision.
For example, the vertical neck muscles and the spine were added as
subdivision skeletons. Notice the indications of underlying muscles,
especially around the neck.
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