
Fluid Simulation Via Disjoint Translating Grids

Sanjit Patel∗

USC-ICT
Anson Chu
USC-ICT

Jonathan Cohen
Rhythm and Hues Studios

Frederic Pighin
USC-ICT

Figure 1: A ball of water collides with a skeleton hand. The frames in this animation were efficiently computed using our technique: the ball
and the splashes belonged to domains that were merged and split to minimize computation cells.

We present an adaptive fluid simulation technique that splits the
computation domain in multiple moving grids. Using this tech-
nique, we are able to simulate fluids over large spatial domains with
reasonable computation times.

Motivation
Fluid dynamics describes the behavior of smoke, steam, water pour-
ing into a container, ocean waves, fire, clouds, explosions, and
many other phenomena that appear frequently in movies, video
games, and virtual reality simulations. From a computer graphics
perspective, computational fluid dynamics (CFD) techniques can be
categorized as either Lagrangian or Eulerian.

Lagrangian techniques translate the Navier-Stokes equations into
the material coordinate frame and treat the fluid flow as a particle
system, where pressure is an inter-particle force that seeks to pre-
serve uniform particle density. While these techniques excel at rep-
resenting splashy and particulate fluid flows, they require excessive
numbers of particles to simulate smooth water surfaces.

Most computer graphics applications have leaned towards the Eu-
lerian approach, where the Navier-Stokes equations are expressed
in a fixed global coordinate frame. Finite-difference methods can
be made unconditionally stable with semi-Lagrangian methods as
suggested by [Stam 1999], and have been used to simulate gases
and liquids. Eulerian methods excel at representing interfaces via
Levelset methods, and incompressibility can be enforced efficiently
using the projection method. While Eulerian methods can be un-
conditionally stable, excessively large time steps introduce severe
numerical viscosity, and hence ruin physical and visual accuracy.
This is why [Enright et al. 2002] recommends limiting the time step
to no more than 5 times the Courant-Friedrich-Levy (CFL) condi-
tion. For splashy simulations, this can lead to excessively small
time steps.

In general the Lagrangian representation is superior for modeling
free-falling water in terms of speed, accuracy, and simplicity. The
goal of the present research is to exploit this observation to accel-
erate simulations of splashy fluids, by mixing a Lagrangian method
for free-falling water with an Eulerian method for contained water.
Our method splits a single simulation into multiple computational
grids, where the motions of the computational grids are treated an-
alytically whenever possible (e.g. when splashes are in free-fall).
During the simulation, these grids are resized, split, or merged de-
pending on the motion of the fluid to improve computational effi-
ciency and accuracy.

∗patels@ict.usc.edu

Our work is an extension of [Rasmussen et al. 2004] where we al-
low the grids to have arbitrary rectilinear motions and individual
adaptive timesteps.

Simulation framework
The power of our approach is to concentrate computational cells
and cycles where they are needed. First spacially, our algorithm
does not require gridding space that does not contain fluids. Sec-
ond, since each disjoint grid is simulated independently, each can
use a different time step. As a result, a fast moving splash might re-
quire small time steps while in the same simulation a slow moving
body of water can afford much larger timesteps.

Our algorithm is designed to manage a collection of grids. The
grids are used to simulate unconnected volumes of fluid. As the
fluid is set in motion, grids might merge (when two volumes of
fluid collide) or split (when a volume of fluid breaks into multiple
unconnected components). The complexity of our framework lies
in managing multiple grids in a way that is physically valid and
efficient. Our algorithm revolves around a scheduling queue that
contains an entry for each grid. The grids are ordered by increasing
timestep, so that the top of the queue points to the grid that has the
smallest timestep (as prescribed by the CFL condition). At each
step, multiple events can occur.

• Merge. Two grids collide and are merged in a single grid.

• Split. A grid splits into multiple separate grids.

• CFL step. In the absence of merging or splitting, the grid that
has the smallest time-step is simulated.

At each iteration, the algorithm checks for potential events and ex-
ecutes them in sequential order. A global clock is maintained and is
updated as events are processed. Each grid hosts a local clock that
reflects events local to the grid. We use an octree-based approach to
decide when to split and merge grids. These data structures allow
checking for these conditons at a fine resolution.

References

ENRIGHT, D. P., MARSCHNER, S. R., AND FEDKIW, R. P. 2002. Animation and
rendering of complex water surfaces. ACM Transactions on Graphics 21, 3 (July),
736–744.

RASMUSSEN, N., NGUYEN, D. Q., GEIGER, W., AND FEDKIW, R. P. 2004. Di-
rectable photorealistic fluids. ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation (July), 193–202.

STAM, J. 1999. Stable fluids. In Proceedings of SIGGRAPH 99, Computer Graphics
Proceedings, Annual Conference Series, 121–128.


