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Figure 1: Our method easily scales from an inexpensive, coarse fluid simulation to a detailed turbulent wake. The base solver, shown to the
left uses only 32×8×32 cells. The remaining pictures show the influence of our turbulence model, with a varying number of particles from
250k to 1M and 4M from left to right. For the simulation with 1M particles we achieve 15 frames per second on average, including rendering.
While the amount of detail directly depends on the number of particles used, the overall flow remains consistent.

Abstract
It is usually difficult to resolve the fine details of turbulent flows, es-
pecially when targeting real-time applications. We present a novel,
scalable turbulence method that uses a realistic energy model and
an efficient particle representation that allows for the accurate and
robust simulation of small-scale detail. We compute transport of
turbulent energy using a complete two-equation k–ε model with
accurate production terms that allows us to capture anisotropic tur-
bulence effects, which integrate smoothly into the base flow. We
only require a very low grid resolution to resolve the underlying
base flow. As we offload complexity from the fluid solver to the
particle system, we can control the detail of the simulation easily
by adjusting the number of particles, without changing the large
scale behavior. In addition, no computations are wasted on areas
that are not visible. We demonstrate that due to the design of our
algorithm it is highly suitable for massively parallel architectures,
and is able to generate detailed turbulent simulations with millions
of particles at high framerates.

Keywords: Turbulence, Physically Based Animation, Fluid Simu-
lation

1 Introduction
The phenomena of smoke, water and fire are fascinating to watch,
one of their most remarkable characteristics being their chaotic,
turbulent nature. In order to create a convincing animated movie
or interactive application with fluid effects, it is therefore vital to
capture this turbulent behavior in a simulation. As turbulence in
fluids extends over many scales, a direct simulation resolving all

details requires a costly high resolution calculation, which is infea-
sible for real-time applications. The high cost of a direct numerical
simulation has lead to increasing interest in algorithms to synthet-
ically generate turbulence for augmenting low resolution simula-
tions. When aiming at short production cycles or even interactivity,
it is moreover essential that the method scales well across different
application scenarios, from computer games to off-line animations.
In addition, it is highly desirable that the large scale behavior is
consistent when changing the amount of detail in the simulation.

Unfortunately, current turbulence methods, especially complex
ones that capture effects more accurately, often rely on a strong
coupling to the base simulation, which makes it hard to obtain pre-
dictable results for varying levels of detail. Additionally, current
methods often have to make many assumptions about the produc-
tion of turbulence. The production term is, however, a crucial fac-
tor that strongly determines the quality of the dynamics generated
with the turbulence model later on. We will make use of a full
two-equation energy transport model with physically plausible pro-
duction terms, which also allow us to capture anisotropic effects.
Anisotropy is important to ensure that the synthetically generated
turbulence integrates into the base flow without unnatural distur-
bances.

We have designed our method to yield turbulent detail using a
Lagrangian representation without requiring any neighborhood in-
formation. The latter is important to allow for an efficient calcu-
lation of detailed fluid motion on modern computing architectures
such as multi-core CPUs, or massively parallel architectures such as
GPUs, where inter-particle communication requires synchroniza-
tion that can adversely impact scaling to wider architectures. The
amount of detail to be resolved can be controlled by adjusting the
number of particles with respect to the computation time available
for each frame, while retaining a consistent large-scale flow.

Our approach is based on a separation of the large scale dy-
namics from the small scale turbulence: large scales are computed
using a low resolution fluid solver, while the turbulent detail with
anisotropic effects is computed on the particle system. As our en-
ergy transport model is only loosely coupled to the large scale flow,
it allows us to use very coarse base simulations that are cheap to
compute. Our contributions are as follows:

• a scalable, particle based turbulence model that is designed
to work without particle-particle interaction, and is therefore
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Figure 2: An overview of our algorithm. A low resolution grid-based solver provides a base velocity and strain field. For each particle, a
turbulence model is computed, which drives the turbulence synthesis with isotropic and anisotropic turbulence. The particles velocity is given
by the large scale velocity from the grid and the small scale turbulent velocity.

suitable for massively parallel computations;

• a robust energy transport model that realistically captures the
production of turbulence,

• and a method for anisotropic synthesis that efficiently cap-
tures directional vortices, thereby realistically integrating the
turbulence into the base flow.

2 Related Work
Fluid simulations have become popular in Computer Graphics with
the introduction of the semi-Lagrangian stable fluids solver by Stam
[1999]. Extensions of this basic solver have been made, e.g., to sim-
ulate liquids [Enright et al. 2002], bubble flows [Hong and Kim
2003], viscoelastic fluids [Goktekin et al. 2004], or interactions
with rigid bodies [Carlson et al. 2004], to give only a few examples
from the large body of work. In this work we will focus on sin-
gle phase fluid simulations with Eulerian fluid solvers due to their
widespread use.

Since the introduction of the stable fluids approach, researchers
have fought with the problem of representing small scale detail
without a costly high resolution simulation. One part of the prob-
lem is the inherent damping of turbulence detail due to numerical
dissipation. A popular approach to alleviate this problem is the use
of higher order advection schemes such as Back and Forth Error
Correction [Kim et al. 2005], MacCormack advection [Selle et al.
2008], QUICK [Molemaker et al. 2008], FLIP [Zhu and Bridson
2005] or the family of CIP methods [Kim et al. 2008a]. Mullen et
al. [2009] even propose an integration scheme that is guaranteed
to preserve energy. While these methods significantly improve the
properties of a basic simulation, the turbulent detail that they can
represent is still inherently limited by the resolution of the under-
lying grid. Adaptive grid methods [Losasso et al. 2004], [Feldman
et al. 2005], [Irving et al. 2006] address the problem by refinement.
The computational overhead introduced by the adaptivity typically
only pays off when the detailed motion is confined to only a small
part of the simulation space, or for very high resolutions.

Another class of methods use synthetic turbulence instead of di-
rect simulation of the small scale features, which allows detailed
effects beyond the grid resolution. The first methods synthesized a
divergence-free turbulence field using the Kolmogorov spectrum,
e.g, in [Stam and Fiume 1993], [Lamorlette and Foster 2002], and
[Rasmussen et al. 2003]. Selle et al. [2005] proposed the use of
manually seeded vortex particles as a turbulence representation.
[Bridson et al. 2007], on the other hand, suggested taking the curl of
vector noise fields to produce divergence free velocity fields. [Zhao

et al. 2010] propose the use of random forcing to integrate a statis-
tical turbulence field with a given simulation.

However, these methods do not take into account the spatial dis-
tribution and dynamics of the underlying turbulence. Therefore, re-
cent methods use a more complex estimation of flow statistics to
better capture the characteristics of turbulence. Kim et al. [2008b]
use wavelet decomposition to determine local turbulence intensi-
ties. This approach assumes that the base solver can resolve the
turbulence dynamics, which is not always the case, e.g., for com-
plex scenes or very coarse solver resolutions. In our model, we
will make use of wavelet turbulence for synthesis, but improve the
coupling with the fluid simulation and energy transport between
different scales of turbulence. Similarly, Schechter [2008], Narain
[2008], and Pfaff et al.[2009] use energy transport models to de-
rive turbulence parameters. While this improves the turbulence dy-
namics, they need to significantly simplify the energy transport, as
in Schechter [2008], or make strong assumptions, such as mixing-
length models to close their one-equation energy model [Narain
et al. 2008]. The method we propose below is based on a stabilized
version of the full two-equation model, and thus physically more
accurate, especially with respect to the production terms. While the
former two primarily target isotropic turbulence, Pfaff et al.[2009]
were able to represent anisotropic effects near obstacles. However,
the method cannot handle free stream turbulence such as rising
smoke, and requires careful tuning for the particle decay in order
to obtain fine-grained turbulence. Moreover, it is not suitable for
real-time application as it relies on inter-particle interactions.

There are only few methods that enable detailed fluid simula-
tion at interactive frame rates. Crane [2007] demonstrated the re-
alization of three-dimensional Eulerian fluid solvers on a GPU,
while Cohen et al. [2010] use a multigrid GPU based-solver to ef-
ficiently solve the Navier-Stokes equations in real-time. However,
fine-grained turbulent detail is hard to achieve with these direct ap-
proaches. We use the approach of Cohen [2010] for an underlying
Eulerian solver, and use its information to drive our particle based
turbulence model. Wicke et al. [2009] presented a method to pre-
compute and couple reduced bases of flows, enabling large scale
simulations at real-time frame rates. As the method requires large
amounts of memory for complex scenes, it is difficult to apply in
interactive scenarios. Horvath et al. [2009] use a hybrid particle ap-
proach with a coupled 2D and 3D simulation to efficiently simulate
fire simulations on the GPU. However, their approach targets scenes
with a fixed camera perspective. Real-time simulations of particle
based liquids have been demonstrated in [Müller et al. 2005], but
as these simulations heavily depend on neighborhood calculations,
detailed simulations can be very expensive, and can be difficult to



stabilize. To summarize, few existing approaches are suitable for
simulating small scale turbulence at interactive frame-rates, as they
either rely on grids with high resolutions, or do not scale well due
to a strong coupling to the base simulation.

3 Turbulence Model
To efficiently simulate small scale turbulence it is not feasible to
directly represent the turbulent motion using a high resolution ve-
locity grid, as the computational effort increases strongly with grid
resolution. Instead, we describe the turbulence field by its statistical
properties, and synthesize turbulence only where needed. Our sim-
ulation approach is driven by a low-resolution Eulerian fluid solver,
and a particle system. The particles coincide with the smoke parti-
cles used for rendering, while the grid-based solver is used to obtain
the large scale characteristics of the flow. The turbulence is com-
puted and synthesized directly on the particles, each of which is
influenced by a texture based turbulence representation, and stores
a preferred axis of rotation for anisotropic effects. An overview of
our model is given in Fig. 2. We chose to describe the turbulence
using an energy representation, as this allows us to adapt power-
ful transport models for our simulations. The spatial and temporal
energy distributions driving the turbulence synthesis are obtained
using a modified k–ε turbulence model that we will explain in the
following sections.

3.1 Energy transport

To simulate the energy dynamics, we use the k–ε model by Laun-
der and Sharma [1974]), which is one of the most widely used
turbulence models in CFD. It is a complete two-equation model,
which unlike one-equation models requires no additional problem-
defendant assumptions, such as the mixing length. On the basis of
a large scale flow field U, it models the two variables k and ε on an
averaged large scale. While k represents the turbulent kinetic energy
contained in the smaller scales, ε stands for the dissipation of the
turbulence structures. A thorough discussion of different turbulence
models used in CFD can be found in the books of Wilcox [1993]
and Pope [2000]. The k–ε model consists of two coupled partial dif-
ferential equations that specify the evolution of the turbulent kinetic
energy k

∂k
∂ t

+U∇k = ∇

(
νT

σ1
∇k

)
+P− ε (1)

and the turbulence dissipation ε :

∂ε

∂ t
+U∇ε = ∇

(
νT

σ2
∇ε

)
+

ε

k
(C1P−C2ε) . (2)

Eq. (1) and Eq. (2) share the same structure: the left-hand side con-
tains an advection in the mean flow field. The right-hand side of
both equations consist of a viscous diffusion term, a production and
a dissipation term, in that order. The turbulent viscosity νT is a vir-
tual viscosity, describing the effect of the small-scale turbulent mo-
tion as a viscous diffusive effect on the averaged, large scale of the
model. Turbulent viscosity is defined as

νT =Cµ

k2

ε
. (3)

C1,2, σ1,2 are modeling constants with the standard values Cµ =
0.09, C1 = 1.44, C2 = 1.92, σk = 1 and σε = 1.3 according to
[Launder and Sharma 1974].

The production P, i.e. energy transfer from the large scale flow
field U to small scale turbulence, is defined in terms of the strain of
the coarse flow Si j as

P = 2νT ∑
i j

Si j
2 , (4)

with Si j =
1
2 (

∂Ui
∂x j

+
∂U j
∂xi

). Given values for k and ε this equation
relates the strain of the fluid to the production of turbulence without
the need for further assumptions about the flow. In addition, this
formulation allows us to easily determine the amount of anisotropic
turbulence that is produced, as will be described in § 3.3.

Instead of discretizing and solving these PDEs on a Eulerian
grid, we compute them directly on the particle system. In this La-
grangian setting, Eq. (1) and Eq. (2) simplify. The advection is in-
herently handled by the motion of the particles with the flow. The
effects of the diffusive terms in the k− ε equations is to mix tur-
bulent energy spatially. Since the turbulent particle motion causes
mixing as particles cross paths, we find incorporating additional
diffusion to be visually unnecessary. Avoiding these terms also al-
lows us to track k and ε independently for all particles and skip a
costly communication step. This yields the following equations for
our model:

Dk
Dt

= P− ε (5)

Dε

Dt
=

ε

k
(C1P−C2ε). (6)

3.2 Turbulence Synthesis

Turbulent energy is usually studied with respect to the spatial scales
of the structures in the flow field. The production of turbulent en-
ergy is typically concentrated in the energy-containing range of a
fluid, its large scales, while dissipation to heat is growing stronger
for the small scales. In between these two extrema lies the so called
inertial subrange, in which the predominant energy transport mech-
anism is forward-scattering, transporting the energy from large to
small scales. This transfer process can be modeled with time de-
pendence, e.g. using the transient model of Obukhov [1941]. How-
ever, the model is often not practical, as the exponential nature of
the transfer terms requires a high spectral and temporal resolution
for a stable solution [Panchev 1971]. Fortunately the transfer phe-
nomena in a flow quickly drive the distribution to a stationary so-
lution in all but extreme situations. Therefore, practical approaches
typically focus on the stationary solution only. Our method concen-
trates on scales mostly within the inertial subrange for which the
well known Kolmogorov five-thirds law, as in [Frisch 1995], is a
reasonable approximation. We will first describe our approach to
compute isotropic turbulence, and then explain our extension for
anisotropic effects.

To synthesize isotropic turbulence, the spectrum is divided into
N octaves. In all our demos, we uses three octaves. Similar to [Kim
et al. 2008b], each band is synthesized using the curl of band-
limited wavelet noise [Cook and DeRose 2005] with band coeffi-
cients determined using a five-thirds law. The total velocity u of a
particle is then given by the large scale flow velocity U, interpo-
lated from the low resolution Eulerian solver, and the turbulence
velocity:

u = U+2(αk)
1
2

N

∑
i

ωi(q)2−
5
6 i (7)

Here, ω is the curl noise textures, evaluated as described in Kim
et al. [2008b], and q represents a texture coordinate stored for each
particle, and k denotes the energy of the largest-scale turbulence
band. The scaling of the wavelet turbulence is chosen such that
the largest synthesized vortices cover 2–4 grid cells, as vortices on
these scales are usually dampened out by numerical viscosity of the
Eulerian simulation which is better able to represent larger vortices.
The energy for the synthetic turbulence is directly given by the k−ε

model with k = kiso + kan for each particle, where kiso denotes the
isotropic energy, and kan the anisotropic energy. Assuming kan = 0
for now, the energy for the largest band is given by α kiso. The scal-
ing parameter α encodes the shape of the assumed energy spectrum,



Figure 3: We apply our method to an accelerating train that, in the end, comes to an abrupt halt. Due to our energy transport model, turbulence
intensities correctly adapt to the direction of the flow and the train’s velocity.

and can be used to artificially increase or decrease the strength of
the turbulence. This is one of the two main parameters of our model.

3.3 Anisotropy

So far we have only considered isotropic turbulence. Some impor-
tant effects, however, most notably the production of turbulence,
are highly anisotropic. So, neglecting anisotropy would result in
turbulence structures that are not fully connected to the motion
of the underlying base flow. Capturing anisotropy requires both a
way to synthesize anisotropic noise, as well as an energy trans-
port model capable of providing the anisotropic energy distribu-
tion. For the latter, Reynolds stress transport models can be used,
see, e.g., [Pope 2000] for details. These models describe the evo-
lution of tensor quantities, most notably the Reynolds stress tensor.
While the complete model is far too complex to be applied in real-
time applications, we will use selected elements of this theory to
augment our model. According to [Pope 2000], the most relevant
case of anisotropy is the production of elongated vortex structures
due to shear effects. This happens, e.g., at boundaries and leads to
rotational velocities perpendicular to the shear plane, reducing the
dimensionality of the effect from three to two dimensions. There-
fore, we consider the case of turbulence consisting of an isotropic
component with energy kiso that is handled as described above, and
a completely anisotropic two-dimensional component with the en-
ergy vector kA. The direction of kA defines the normal of a plane to
which the anisotropic turbulence is confined. This is equivalent to a
preferred rotation axis, and the magnitude of kA defines the energy
contained in the anisotropic vortices.

Energy Dynamics While the k–ε equations Eq. (5),(6) still hold
for the total energy k = kiso + kan = kiso + |kA|, we need to deter-
mine the evolution equation of the anisotropic component kA. The
mechanisms here are similar to transport of total energy: there is
a production, a dissipation and additionally, a redistribution term.
Analogous to Eq. (4), the production vector is given by the turbu-
lent viscosity νT and the strain. We use an eigen-decomposition
to divide the strain tensor into an anisotropic component, repre-
sented with two-dimensional turbulence, and an isotropic compo-
nent. In the following, λi denote the eigenvalues and vi the eigen-
vectors of Si j , where λ1 has the biggest and λ3 the smallest abso-
lute value. Now consider the production ellipsoid defined by the
vectors pi = 2νT λ 2

i vi. The plane of two-dimensional shear stress
is spanned by its two longest vectors p1, p2, while the plane nor-
mal is given by v3. The isotropic component, on the other hand,
is the sphere spanned by the smallest common component of all
vectors, that is |p3|. Therefore, we can define the anisotropic pro-
duction vector to be

PA = 2νT (λ 2
1 +λ

2
2 −2λ

2
3 )v3 . (8)

While in areas of high production, e.g. near obstacle boundaries,
anisotropic effects can be observed, the turbulence further away
from these regions is largely isotropic. This is due to the fact that

transport processes lead to a quick isotropization of the turbulent
flow. This is true for spatial turbulent transport as well for trans-
port through the energy cascade. The LRR-IP model [Naot et al.
1970] models this isotropization. If we transfer this model to our
turbulence setting, it yields an energy transfer rate of

DkA
Dt

= (1−CA)PA−CR
ε

k
kA . (9)

from |kA| to kiso. The standard model constants are defined as CA =
0.6,CR = 1.8. Here, the dissipation ε is generally assumed to be
isotropic, as it occurs on very small scales, while the anisotropic
vortices are initiated primarily on the larger scales. This means that
it is sufficient to solve the isotropic Eq. (6) for dissipation.

Synthesis We extend the synthesis algorithm from § 3.2 for
anisotropy by including additional turbulence bands. In these bands,
two-dimensional wavelet turbulence ω2D is synthesized as in
Eq. (7). The operator R rotates the noise field into a plane normal
to the anisotropy vector kA. The total velocity u of a particle can
therefore be determined by the equation

u = U+2(α kiso)
1
2

N

∑
i

ωi(q)2−
5
6 i+

2 |α kA|
1
2

M

∑
j

R(kA)ω
2D
j (q)2−

5
6 j (10)

with kiso = k− |kA|. As anisotropy decays quickly in the spec-
tral cascade, we have found that it is sufficient to use one band of
anisotropic turbulence for the largest scale.

4 Implementation
We have implemented our model to execute both the Eulerian fluid
simulation and the particle based turbulence model on a GPU. For
the underlying Eulerian solver, we use a typical MAC discretiza-
tion with second order semi-Lagrangian advection, as described in
[Bridson 2008] and [Selle et al. 2008]. Our implementation makes
use of a multi-grid solver for computing the pressure correction,
as described in [Cohen et al. 2010]. For the Lagrangian turbulence
model, each particle stores its position and velocity as well as the
turbulence parameters k,ε,kA and q. The evolution of these vari-
ables is given by integrating Eq. (5), Eq. (6), Eq. (9), and evaluat-
ing Eq. (10), respectively, on the particle system. We use a simple
forward Euler integrator for all of these equations. The strain eigen-
decomposition on the other hand is calculated on each grid cell. As
the 3× 3 strain tensor is symmetric, eigenvalues can be found ef-
ficiently using the analytic formulation [Smith 1961]. Our model
is designed to work without any particle-particle interactions, and
only a few linear interpolations of data from simulation grid for ve-
locity and strain are necessary to compute the particle dynamics.
This makes it very efficient to compute even in massively parallel
settings. In our setup, the smoke is rendered online using half-angle



volumetric shadowing by Ikits et al. [2004], enabling the complete
framework to run at interactive frame-rates and therefore providing
immediate results. Below, we will discuss important details con-
cerning stability and initialization.

Stability The k–ε model, being a coupled system of two PDEs in
its original form, has inherent stability problems. Especially k in the
divider of Eq. (6) causes instabilities for flows with low turbulence.
Therefore, the model is usually modified to guarantee stability. A
commonly used approach is a low-Reynolds number treatment, as
described in [Pope 2000]. We use a simplified version of this ap-
proach to ensure that a minimal turbulent energy is always present
in the simulation.

A meaningful range for the turbulent energy k is given by k =
3
2U0

2I2 , with the turbulent intensity I ∈ [0 . . .1]. Here, U0 is the
characteristic velocity scale, which can be determined from the sim-
ulation parameters, e.g., the maximal speed of the car in Fig. 1. As
suggested in the field of aerodynamics research [Spalart and Rum-
sey 2007], we use a value of Imin = 10−3 as a minimal turbulent in-
tensity, while, naturally, the maximal intensity is given by Imax = 1.
By restricting the simulation to this meaningful range of values, the
system quickly recovers from overshoots and is stable for arbitrary
time steps.

Similarly, we can define a corresponding range for the values of
ε . We obtain a minimum dissipation by specifying a minimal tur-
bulent viscosity equal to the molecular viscosity of air νair, which
represents a natural lower bound for the viscosity of smoke sim-
ulations. Inserting this into Eq. (3) yields εmin = Cµ

kmin
2

νair
. The

maximal dissipation, on the other hand, can be derived on the
basis of a minimal turbulent length scale Lmin, and is given by
εmax = Cµ

3
4 kmax

3
2 1

Lmin
. We use a minimal length scale of 1

10 of a
grid cell in our simulations.

Note that these ranges for turbulent energy and dissipation are
useful when allowing users to interact with the simulation. They
can, e.g., provide artists with intuitive parameter ranges for setting
up turbulence sources in a scene.

Initial state We seed the particles at the smoke inflow of the
scene. As this will usually not coincide with the fluid inflow region,
we need to specify sensible initial values for the turbulence parame-
ters of these particles. In cases where the inlet is in a low-turbulence
area, we can use the lower boundaries k0 and ε0 as initial values. If,
on the other hand, the smoke should be generated in a turbulent
region, we need to specify initial energy levels, as we have no in-
formation about the history of the particles. This can be achieved
with different approaches. We estimate typical turbulent intensities
for k and ε similar to the estimation of maximal bounds described
in the previous paragraph, and use these values for initializing the
particles. Here, the minimal length scale Linlet is another important
parameter of our model, and can be used to tune the amount of tur-
bulence injected into the scene. Another possibility is to initialize
particles with the lower bounds k0 and ε0, and then perform a small
number of iterations of the turbulence model on the newly seeded
particles.

Texture Advection Naturally, the structure of the turbulence
should deform as given by the motion of the flow. However, us-
ing a naive approach, e.g., updating the local texture coordinate q
of each particle using only the large scale motion with Dq

Dt = u−U
quickly destroys coherence of the turbulent structures. This would
lead to uniform noise instead of recognizable swirling motions, an
effect that is caused by the mixing behavior of the turbulent flow.

By construction, our aim is to update each particle without hav-
ing to know about its neighbors, so it is undesirable to perform any
kind of spatial interpolation on the particles.

Therefore, we rely on guiding particles to preserve the local co-

1: // Grid-based Fluid solver
2: Semi-Lagrangian advection of U
3: Pressure projection
4: Calculate strain field Si j
5:
6: Seed and initialize new particles
7:
8: for each particle do
9: Sample U , Si j at particle position x

10:
11: // Energy dynamics
12: Compute turbulent viscosity: νT ←Cµ

k2

ε

13: Compute production: P←Eq. (8)
14: Integrate k← k+∆t (|P|− ε)
15: Integrate ε ← ε +∆t ε

k (C1P−C2ε)

16: Energy transfer: kA← kA +∆t (1−C2)P−∆t CR
ε

k kA
17: Stabilize k,ε using kmin,max and εmin,max
18:
19: // Motion equations
20: Synthesize velocity: u← Eq. (10)
21: Integrate x← x+∆t u
22: Integrate q← q+∆t (qG +x−xG)
23: end for
24: Advect guiding particles in flow field U
25:
26: Render simulation data

Figure 4: Pseudo-code for the simulation loop.

herence of the turbulence. Guiding particles are seeded together
with the actual smoke particles, and assigned to a small group of
smoke particles based on local neighborhood. On seeding, each
guiding particle is assigned a fixed texture coordinate qG based on
its world coordinate, which acts as a local frame of reference for
the texture coordinates of the attached smoke particles.

As the guiding particles represent the motion of the turbulence
textures, they are advected using only the large scale flow from the
underlying simulation. The local texture coordinate of each smoke
particle can now be computed using the local position x with re-
spect to the assigned guiding particle as q = x−xG +qG. This ap-
proach allows us to efficiently preserve locality while adhering the
turbulence motion to the large scale flow. While coherence and in-
compressibility are exactly preserved within the particle cloud of a
guiding particle, coherence loss and small-scale deviations from in-
compressibility may appear between these clouds. Therefore, guid-
ing particles should be seeded such that the associated clouds are
compact, sized above turbulence length scale, and cover all flow
paths.

While more sophisticated models for texture advection, e.g., [Yu
et al. 2009], or a dynamic re-assignment of guiding particles could
be used, we find that the described approach works well in practice.
In our example scenes, we seed between 1 and 10 guiding parti-
cle per timestep, randomly distributed across the seeding area. We
found this to be sufficient to prevent visual artifacts due to coher-
ence loss.

The complete simulation loop is specified in the pseudo-code in
Fig. 4.

5 Results and Discussion

In the following, we will discuss several simulations to highlight the
features of our model and differences to previous work. We refer
the reader to the accompanying video for seeing these simulations
in motion.



Figure 5: The wake behind a car is simulated with 1M particles.
Our method (top) and the reference high-resolution solver (bottom)
show similar small-scale details.

Comparison with reference simulation In order to evaluate
the realism of our model, we simulate the flow in the wake of a
car (Fig. 5). The simulation uses 1M particles, and a base solver
resolution of 32× 8× 32. We compare our model to a 256× 64×
256 high-resolution reference solver. While the exact form of the
turbulence is different between our method and the reference solver,
we observe that both show a similar level of small-scale detail.

Energy model We demonstrate the ability of our model to han-
dle obstacle-induced turbulence by simulating a flow over a ramp
shown in Fig. 7. This setup uses a resolution of the base solver of
64× 16× 16 grid cells. When using low grid resolutions such as
this, flow instabilities induced by obstacles are dampened out, and
no turbulence is induced. This effect can be seen in the top im-
age of Fig. 7. In this example, turbulence should develop to the
left of the ramp as the flow travels from right to left. Our method
tracks causality in the production of turbulence, resulting in a cor-
rect swirling motion perpendicular to the edge of the step, purely
behind the sharp edge. Turbulence synthesis methods such as Kim
et al. [2008b] that amplify or derive turbulent energy directly from
the computed velocity field do not track the causality in the pro-
duction of turbulence. In this case, Wavelet turbulence incorrectly
produces turbulence in the laminar region right of the edge.

In a more complex example shown in Fig. 3, we simulate a train
accelerating and braking. Here, the source of turbulence is not in-
duced by obstacles, as in the ramp example, but is due to the pulsed
emission of smoke from the chimney. This is also inherently han-
dled by the production term of our energy model. Also, correct
adaptation of turbulence intensity to the train’s velocity can be ob-
served.

Anisotropy The effect of anisotropic turbulence is demonstrated
in a simulation of a strongly turbulent flow past a cylinder. We seed
a thin horizontal sheet of smoke to the right, visualizing only a slice
of the 3D problem. The side-view of the simulation, with anisotropy
handling disabled (top) and enabled (bottom) is shown in Fig. 6. If
anisotropy is not handled, isotropic turbulence is injected immedi-
ately downstream of the obstacle. This leads to strong disturbances

isotropic

anisotropic

Figure 6: In this example, a thin sheet of smoke flows around a
cylinder. Here, the side view is depicted. Using only the isotropic
turbulence model (top), the induced turbulence disturbs the flow, as
can be seen by the unrealistic spikes left of the cylinder. Using our
anisotropy extensions (bottom), the turbulence integrates into the
overall flow, and a smooth transition to full isotropic turbulence can
be observed.

normal to the plane of motion, as can be seen in the top image of
Fig. 6. Our model predicts a zone of high anisotropy behind the
cylinder. Here, the turbulence is expected to be confined within the
smoke sheet, therefore integrating with the large scale Karman vor-
tices, before becoming more and more isotropic, towards the left
side of the lower image.

Scalability To demonstrate the scalability of our model, we sim-
ulate a smoke wake behind a car with varying particle numbers,
while keeping the grid resolution fixed at 32× 8× 32. As can be
seen in Fig. 1, the large scale flow remains consistent in all cases,
while the amount detail is controlled by the number of particles.
As it is sufficient to use a very low grid resolution for the Eule-
rian solver in all examples, the performance scales approximately
linearly in the number of particles. With one million particles, our
model achieves 15 frame per second on average (including render-
ing). Increasing the number of particles to four millions, we still
achieve 4.7 frames per second. The exact numbers can be found in
Table 1. This means our model is able to compute accurate turbu-
lence dynamics efficiently. GPU-based methods relying on grids are
strongly limited in detail due to the available memory, the Eulerian
solver of our implementation, e.g., is limited to a 1283 resolution
using the same hardware. Using our particle based approach we
are, on the other hand, able to achieve very detailed motion in an
efficient manner.

An example of our method in an interactive game-like setting
is included in the video. The user controls a smoke emitting gun,
demonstrating free stream turbulence as well as turbulence induced
by obstacle interaction. Our method also opens up the possibility
to compute and synthesize turbulence outside the grid-based solver.
If no underlying grid is present, zero turbulence production and the
last encountered large-scale velocity are taken as an input for the
calculation. In the video, we show that this allows a smoke volume
to leave the domain of the Eulerian simulation, while still exhibit-
ing turbulent motion. This is very useful for interactive applications
where the spatial limits of the domain should be hidden from the
user.

For all of our examples, we vary only the α and Lin f low param-
eters. Recall that α controls the overall amount of turbulence and
Lin f low controls turbulence at an inlet. Varying only these parame-



Setup Grid res. #part α Lin Base Part. Total
[ms] [ms] [fps]

Car Fig. 1 32×8×32 250k 2.5 0.04 20 7.6 34
Car 32×8×32 1M 2.5 0.04 19 27 15
Car 32×8×32 4M 2.5 0.04 20 92 4.9
Car(no turb.) 32×8×32 1M – – 19 6.4 20
Comp. Fig. 7 64×16×16 1M 2.6 0.08 19 23 17
Aniso. Fig. 6 64×16×16 1M 15.0 0.1 19 27 15
Iso. Fig. 6 64×16×16 1M 15.0 0.1 14 27 16
Smoke gun 48×48×48 1M 4.2 0.02 25 18 18
Train Fig. 3 64×32×16 6M 3.0 0.05 44 161 3.7

Table 1: Performance numbers for our simulation runs. Timings
are given per frame. Base refers to the grid-based solver, while
Part. represents turbulence computation, synthesis and particle sys-
tem update. The total framerate includes both simulation and online
rendering. All simulations were run on a NVidia GTX 480 graphics
card on a workstation with an Intel Core i7 CPU and 8GB of RAM.

ters allows for artistic control while retaining visual realism.

6 Conclusions
We have presented a novel scalable algorithm for simulating
anisotropic turbulence. By separating the system into a grid-based
solver and a decoupled particle system without particle-particle in-
teractions, our method is highly efficient on parallel systems. The
algorithm is driven by an anisotropic energy transport mechanism,
and handles both free stream turbulence production and turbulence
induced by walls. Turbulence is synthesized directly on the ren-
dered particles, which allows the simulation to handle the full de-
tail that will later on be displayed, while not wasting any processor
cycles for regions that are not visible. This way, we achieve frame
rates of more than 15 frames per second even for detailed simula-
tions with millions of particles.

On the other hand, our algorithm can exhibit artifacts when the
underlying simulation is not able to resolve all features of a flow,
e.g., in the presence of very thin objects. Analytic wall functions,
e.g., like those in [Pfaff et al. 2009], could help to provide a more
accurate turbulence seeding with a coarse flow representation. As
our underlying coarse grid solver [Cohen et al. 2010] can only han-
dle first-order accurate boundary conditions, stair-step artifacts may
appear around solid curved obstacles. It would therefore be interest-
ing to pair our method with a more accurate real-time solver, and to
extend our particle based simulation to handle sub-grid geometric
detail.

Another limitation of our approach is the restriction to single
phase fluid simulations. Also, the algorithm does not perform well
for large, non-turbulent smoke volumes, which can have unnec-
essarily large numbers of particles inside the volume that hardly
move. Both of these points are interesting venues for future re-
search. It would be highly interesting to extend our model to free
surface flows for liquids, and use an adaptive particle representation
to handle larger smoke volumes more efficiently.

In addition, we plan to extend our framework to automatically
adapt the level-of-detail for large interactive scenes, as the modu-
larity of our approach makes it highly suitable to combine differ-
ent simulation approaches. This will allow us to smoothly transi-
tion from a simple static flow field, to a Eulerian fluid simulation,
while finally adding detail with our anisotropic Lagrangian turbu-
lence model.

Acknowledgments The authors would like to thank the SIG-
GRAPH Asia reviewers for their comment and suggestions, and
everyone at CGL for the valuable discussions. Tobias Pfaff is sup-
ported by the ETH grant TH-23 07-3.

Figure 7: A flow over a ramp is simulated. The low-resolution
solver (top) does not represent the flow instability after the edge
of the ramp. Therefore methods like Wavelet Turbulence (middle)
that depend on the solver for energy calculations also fail to catch
the correct turbulence seeding region. Our model (bottom) is able to
predict turbulence production due to a full energy transport model.
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